BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Olsman N, Baetica AA, Xiao F, Leong YP, Murray RM, Doyle JC. Hard Limits and Performance Tradeoffs in a Class of Antithetic Integral Feedback Networks. Cell Syst 2019;9:49-63.e16. [PMID: 31279505 DOI: 10.1016/j.cels.2019.06.001] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
Number Citing Articles
1 Filo M, Chang CH, Khammash M. Biomolecular feedback controllers: from theory to applications. Curr Opin Biotechnol 2023;79:102882. [PMID: 36638743 DOI: 10.1016/j.copbio.2022.102882] [Reference Citation Analysis]
2 Li Y, Xie HQ, Guo TL, Liu Y, Zhang W, Ma H, Ma D, Xu L, Yu S, Chen G, Ji J, Jiang S, Zhao B. Subacute exposure to dechlorane 602 dysregulates gene expression and immunity in the gut of mice. Ecotoxicology and Environmental Safety 2023;249:114462. [DOI: 10.1016/j.ecoenv.2022.114462] [Reference Citation Analysis]
3 Dey S, Vargas-garcia CA, Singh A. Sequestration-based feedback control of blood platelet levels. 2022 IEEE 61st Conference on Decision and Control (CDC) 2022. [DOI: 10.1109/cdc51059.2022.9992801] [Reference Citation Analysis]
4 Anastassov S, Filo M, Chang C, Khammash M. Inteins in the Loop: A Framework for Engineering Advanced Biomolecular Controllers for Robust Perfect Adaptation.. [DOI: 10.1101/2022.08.05.502923] [Reference Citation Analysis]
5 Filo M, Kumar S, Anastassov S, Khammash M. Exploiting the Nonlinear Structure of the Antithetic Integral Controller to Enhance Dynamic Performance.. [DOI: 10.1101/2022.08.02.502513] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Perkins ML, Gandara L, Crocker J. A synthetic synthesis to explore animal evolution and development. Phil Trans R Soc B 2022;377:20200517. [DOI: 10.1098/rstb.2020.0517] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Sootla A, Delalez N, Alexis E, Norman A, Steel H, Wadhams GH, Papachristodoulou A. Dichotomous feedback: a signal sequestration-based feedback mechanism for biocontroller design. J R Soc Interface 2022;19:20210737. [PMID: 35440202 DOI: 10.1098/rsif.2021.0737] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Filo M, Kumar S, Khammash M. A hierarchy of biomolecular proportional-integral-derivative feedback controllers for robust perfect adaptation and dynamic performance. Nat Commun 2022;13:2119. [PMID: 35440114 DOI: 10.1038/s41467-022-29640-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Jones RD, Qian Y, Ilia K, Wang B, Laub MT, Del Vecchio D, Weiss R. Robust and tunable signal processing in mammalian cells via engineered covalent modification cycles. Nat Commun 2022;13:1720. [PMID: 35361767 DOI: 10.1038/s41467-022-29338-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Dey S, Vargas-garcia CA, Singh A. Dynamic analysis of sequestration-based feedbacks in cellular and biomolecular circuits.. [DOI: 10.1101/2022.03.26.485894] [Reference Citation Analysis]
11 Hancock EJ, Oyarzún DA. Stabilization of antithetic control via molecular buffering. J R Soc Interface 2022;19:20210762. [PMID: 35259958 DOI: 10.1098/rsif.2021.0762] [Reference Citation Analysis]
12 Foo M, Akman OE, Bates DG. Restoring circadian gene profiles in clock networks using synthetic feedback control. NPJ Syst Biol Appl 2022;8:7. [PMID: 35169147 DOI: 10.1038/s41540-022-00216-x] [Reference Citation Analysis]
13 Sootla A, Delalez N, Alexis E, Norman A, Steel H, Wadhams GH, Papachristodoulou A. Dichotomous Feedback: A Signal Sequestration-based Feedback Mechanism for Biocontroller Design.. [DOI: 10.1101/2021.12.27.474252] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Alexis E, Schulte CCM, Cardelli L, Papachristodoulou A. Biomolecular mechanisms for signal differentiation. iScience 2021;24:103462. [PMID: 34927021 DOI: 10.1016/j.isci.2021.103462] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Duso L, Bianucci T, Zechner C. Shared antithetic integral control for dynamic cell populations. 2021 60th IEEE Conference on Decision and Control (CDC) 2021. [DOI: 10.1109/cdc45484.2021.9683346] [Reference Citation Analysis]
16 Kumar S, Rullan M, Khammash M. Rapid prototyping and design of cybergenetic single-cell controllers. Nat Commun 2021;12:5651. [PMID: 34561433 DOI: 10.1038/s41467-021-25754-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
17 Hu CY, Murray RM. Layered Feedback Control Overcomes Performance Trade-off in Synthetic Biomolecular Networks.. [DOI: 10.1101/2021.09.12.459953] [Reference Citation Analysis]
18 Shakiba N, Jones RD, Weiss R, Del Vecchio D. Context-aware synthetic biology by controller design: Engineering the mammalian cell. Cell Syst 2021;12:561-92. [PMID: 34139166 DOI: 10.1016/j.cels.2021.05.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
19 Khammash MH. Perfect adaptation in biology. Cell Syst 2021;12:509-21. [PMID: 34139163 DOI: 10.1016/j.cels.2021.05.020] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 11.5] [Reference Citation Analysis]
20 Huang X, Li J, Zhang Z. Achieving Optimal Tradeoff Adaptation Functionality for the Minimal Gene Regulatory Network. 2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB) 2021. [DOI: 10.1109/icbcb52223.2021.9459221] [Reference Citation Analysis]
21 Xiao F, Khammash M, Doyle JC. Stability and Control of Biomolecular Circuits through Structure. 2021 American Control Conference (ACC) 2021. [DOI: 10.23919/acc50511.2021.9483039] [Reference Citation Analysis]
22 Alexis E, Schulte CC, Cardelli L, Papachristodoulou A. Biomolecular mechanisms for signal differentiation.. [DOI: 10.1101/2021.04.29.441952] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Hancock EJ, Oyarzún DA. Stabilisation of Antithetic Control via Molecular Buffering.. [DOI: 10.1101/2021.04.18.440372] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Filo M, Kumar S, Khammash M. A Hierarchy of Biomolecular Proportional-Integral-Derivative Feedback Controllers for Robust Perfect Adaptation and Dynamic Performance.. [DOI: 10.1101/2021.03.21.436342] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Zand AM, Tavazoei MS. Synthetic Biology-Inspired Robust-Perfect-Adaptation-Achieving Control Systems: Model Reduction and Stability Analysis. IEEE Trans Control Netw Syst 2021;8:233-245. [DOI: 10.1109/tcns.2020.3038835] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Cuba Samaniego C, Franco E. Ultrasensitive molecular controllers for quasi-integral feedback. Cell Syst 2021;12:272-288.e3. [PMID: 33539724 DOI: 10.1016/j.cels.2021.01.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
27 Biswas D, Iglesias PA. Sensitivity minimization, biological homeostasis and information theory. Biol Cybern 2021;115:103-13. [PMID: 33475834 DOI: 10.1007/s00422-021-00860-2] [Reference Citation Analysis]
28 Ren X, Samaniego CC, Murray RM, Franco E. Bistable State Switch Enables Ultrasensitive Feedback Control in Heterogeneous Microbial Populations.. [DOI: 10.1101/2020.11.10.377051] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Xiao F, Khammash M, Doyle JC. Stability and Control of Biomolecular Circuits through Structure.. [DOI: 10.1101/2020.11.04.368381] [Reference Citation Analysis]
30 Hurbain J, Labavić D, Thommen Q, Pfeuty B. Theoretical study of the impact of adaptation on cell-fate heterogeneity and fractional killing. Sci Rep 2020;10:17429. [PMID: 33060729 DOI: 10.1038/s41598-020-74238-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Gómez-schiavon M, El-samad H. CoRa –A general approach for quantifying biological feedback control.. [DOI: 10.1101/2020.10.09.334078] [Reference Citation Analysis]
32 Baetica AA, Leong YP, Murray RM. Guidelines for designing the antithetic feedback motif. Phys Biol 2020;17:055002. [PMID: 32217822 DOI: 10.1088/1478-3975/ab8454] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
33 Briat C. A Biology-Inspired Approach to the Positive Integral Control of Positive Systems: The Antithetic, Exponential, and Logistic Integral Controllers. SIAM J Appl Dyn Syst 2020;19:619-64. [DOI: 10.1137/19m1279228] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
34 Olsman N, Forni F. Antithetic integral feedback for the robust control of monostable and oscillatory biomolecular circuits. IFAC-PapersOnLine 2020;53:16826-16833. [DOI: 10.1016/j.ifacol.2020.12.1176] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
35 [DOI: 10.1101/838748] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]