BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang X, Wang F, Wang C, Wang P, Fu H, Zhao C. Photocatalysis activation of peroxodisulfate over the supported Fe3O4 catalyst derived from MIL-88A(Fe) for efficient tetracycline hydrochloride degradation. Chemical Engineering Journal 2021;426:131927. [DOI: 10.1016/j.cej.2021.131927] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 18.5] [Reference Citation Analysis]
Number Citing Articles
1 Li Y, Wang C, Wang F, Liu W, Chen L, Zhao C, Fu H, Wang P, Duan X. Nearly zero peroxydisulfate consumption for persistent aqueous organic pollutants degradation via nonradical processes supported by in-situ sulfate radical regeneration in defective MIL-88B(Fe). Applied Catalysis B: Environmental 2023;331:122699. [DOI: 10.1016/j.apcatb.2023.122699] [Reference Citation Analysis]
2 Chen C, Yang H, Zhang J, Lin J, Yang S, Xiong X, Qin H, Xi J, Kong Z, Song L. Cu2−xSe/FeSe2 Z-type heterojunction demonstrate versatile boosting photoelectrochemical, electrocatalytic and photocatalytic properties. Journal of Alloys and Compounds 2023;947:169496. [DOI: 10.1016/j.jallcom.2023.169496] [Reference Citation Analysis]
3 Guo P, Zhou Y, Zhang Y, Li Y, Lei H, Zhang H, Li S. Insights into the well-dispersed nano-Fe3O4 catalyst supported by N-doped biochar prepared from steel pickling waste liquor for activating peroxydisulfate to degrade tetracycline. Chemical Engineering Journal 2023;464:142548. [DOI: 10.1016/j.cej.2023.142548] [Reference Citation Analysis]
4 Lv Y, He S, Liu S, Yu Z, Jiang Y, Hu Y, Liu Y, Lin C, Ye X, Yang G, Liu M. Rapid degradation of PFOA by the activated peroxymono-sulfate with FeCo/MoS2 catalyst. Journal of Environmental Chemical Engineering 2023;11:109467. [DOI: 10.1016/j.jece.2023.109467] [Reference Citation Analysis]
5 Wang F, Gao Y, Liu S, Yi X, Wang C, Fu H. Fabrication strategies of metal-organic frameworks derivatives for catalytic aqueous pollutants elimination. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.142466] [Reference Citation Analysis]
6 Zhang Z, Wang F, Wang F, Wang C, Wang P. Efficient atrazine degradation via photoactivated SR-AOP over S-BUC-21(Fe): The formation and contribution of different reactive oxygen species. Separation and Purification Technology 2023;307:122864. [DOI: 10.1016/j.seppur.2022.122864] [Reference Citation Analysis]
7 Xiong X, Yang H, Zhang J, Lin J, Yang S, Chen C, Xi J, Kong Z, Song L, Zeng J. Novel MoSSe/Bi2WO6 S-scheme heterojunction photocatalysts for significantly improved photoelectrochemical and photocatalytic performance. Journal of Alloys and Compounds 2023;933:167784. [DOI: 10.1016/j.jallcom.2022.167784] [Reference Citation Analysis]
8 Hmoudah M, El-qanni A, Tesser R, Esposito R, Petrone A, Jung O, Salmi T, Russo V, Di Serio M. Assessment of the robustness of MIL-88A in an aqueous solution: Experimental and DFT investigations. Materials Science and Engineering: B 2023;288:116179. [DOI: 10.1016/j.mseb.2022.116179] [Reference Citation Analysis]
9 Wang R, Wang H, Zhong C, Liu Q, Feng R, Zhao Y, Sun M, Yan L, Yan T. Peroxymonosulfate activation by Cu2O@CuO nanowires array-based electroactive filter for Efficient Ofloxacin Removal. Journal of Environmental Chemical Engineering 2023. [DOI: 10.1016/j.jece.2023.109421] [Reference Citation Analysis]
10 Ma X, Yuan H, Qiao Q, Zhang S, Tao H. Enhanced catalysis for degradation of rhodamine B by amino-functionalized Fe-MOFs with high adsorption capacity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023. [DOI: 10.1016/j.colsurfa.2023.131099] [Reference Citation Analysis]
11 Gong M, Wang X, Li M, Mu W, Cao Y, Liu H, Lv Y, Qi X, Gao G. High-efficient and recoverable Mo72V30@Fe3O4/C catalyst for oxidation of hydroxyfurfural. Fuel 2023;332:126050. [DOI: 10.1016/j.fuel.2022.126050] [Reference Citation Analysis]
12 Wang F, Zhang Z, Wang C. Selective oxidation of aqueous organic pollutants over MOFs-based catalysts: a mini review. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141538] [Reference Citation Analysis]
13 Tripathy SP, Subudhi S, Ray A, Behera P, Panda J, Dash S, Parida K. Hydrolytically stable mixed ditopic linker based zirconium metal organic framework as a robust photocatalyst towards Tetracycline Hydrochloride degradation and hydrogen evolution. Journal of Colloid and Interface Science 2023;629:705-718. [DOI: 10.1016/j.jcis.2022.09.104] [Reference Citation Analysis]
14 Yu C, Wang S, Zhang K, Li M, Gao H, Zhang J, Yang H, Hu L, Jagadeesha A, Li D. Visible-light-enhanced photocatalytic activity of BaTiO3/γ-Al2O3 composite photocatalysts for photodegradation of tetracycline hydrochloride. Optical Materials 2023;135:113364. [DOI: 10.1016/j.optmat.2022.113364] [Reference Citation Analysis]
15 Yan J, Gong L, Chai S, Guo C, Zhang W, Wan H. ZIF-67 loaded lotus leaf-derived biochar for efficient peroxymonosulfate activation for sustained levofloxacin degradation. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141456] [Reference Citation Analysis]
16 Li R, Xiong J, Zhang Y, Wang S, Zhu H, Lu L. Catalytic Ozonation of Norfloxacin Using Co-Mn/CeO2 as a Multi-Component Composite Catalyst. Catalysts 2022;12:1606. [DOI: 10.3390/catal12121606] [Reference Citation Analysis]
17 Ren M, Hou J, Ma J, Zhang Y, Liu M, Tan X, Zhao P, Lin A, Cui J. Superior electron utilization of the intermetallic L10‑FePt-dispersed g-C3N4 for high-efficiency activating peroxymonosulfate. Separation and Purification Technology 2022;302:122105. [DOI: 10.1016/j.seppur.2022.122105] [Reference Citation Analysis]
18 Zhang X, Lan M, Wang F, Wang C, Wang P, Ge C, Liu W. Immobilized N-C/Co derived from ZIF-67 as PS-AOP catalyst for effective tetracycline matrix elimination: From batch to continuous process. Chemical Engineering Journal 2022;450:138082. [DOI: 10.1016/j.cej.2022.138082] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Wang X, Li J, Chen K, Li J, Jia Y, Mei Q, Wang Q. Facile synthesis of oxygen vacancies enriched ZnFe2O4 for effective photocatalytic peroxodisulfate activation. Separation and Purification Technology 2022;303:122205. [DOI: 10.1016/j.seppur.2022.122205] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Cao Z, Zhao Y, Li J, Wang Q, Mei Q, Cheng H. Rapid electron transfer-promoted tetracycline hydrochloride degradation: Enhanced activity in visible light-coupled peroxymonosulfate with PdO/g-C3N4/kaolinite catalyst. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.141191] [Reference Citation Analysis]
21 Javaid A, Imran M, Latif S, Hussain N, Bilal M. Functionalized magnetic nanostructured composites and hybrids for photocatalytic elimination of pharmaceuticals and personal care products. Science of The Total Environment 2022;849:157683. [DOI: 10.1016/j.scitotenv.2022.157683] [Reference Citation Analysis]
22 Gan W, Guo J, Fu X, Zhang M, Ding C, Hai Y, Lu Y, Li J, Li Z, Sun Z. Dual-defects modified ultrathin 2D/2D TiO2/g-C3N4 heterojunction for efficient removal of levofloxacin: performance, degradation pathway, and mechanism. Separation and Purification Technology 2022. [DOI: 10.1016/j.seppur.2022.122578] [Reference Citation Analysis]
23 Ding J, Wang L, Ma Y, Sun Y, Zhu Y, Wang L, Li Y, Ji W. Synergistically boosted non-radical catalytic oxidation by encapsulating Fe3O4 nanocluster into hollow multi-porous carbon octahedra with emphasise on interfacial engineering. Separation and Purification Technology 2022. [DOI: 10.1016/j.seppur.2022.122706] [Reference Citation Analysis]
24 Wang L, Luo D, Yang J, Wang C. Metal-organic frameworks-derived catalysts for contaminant degradation in persulfate-based advanced oxidation processes. Journal of Cleaner Production 2022;375:134118. [DOI: 10.1016/j.jclepro.2022.134118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Chen X, Lin J, Su Y, Tang S. One-Step Carbonization Synthesis of Magnetic Biochar with 3D Network Structure and Its Application in Organic Pollutant Control. IJMS 2022;23:12579. [DOI: 10.3390/ijms232012579] [Reference Citation Analysis]
26 Xie F, Zhu W, Lin P, Zhang J, Hao Z, Zhang J, Huang T. A bimetallic (Co/Fe) modified nickel foam (NF) anode as the peroxymonosulfate (PMS) activator: Characteristics and mechanism. Separation and Purification Technology 2022;296:121429. [DOI: 10.1016/j.seppur.2022.121429] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
27 Cao X, Huo W, Wang M, Wei H, Lu Z, Li K. Visible-light-assisted peroxydisulfate activation over Ag6Si2O7/Cu(II)-modified palygorskite composite for the effective degradation of organic pollutants by radical and nonradical pathways. Environ Res 2022;214:113970. [PMID: 35987371 DOI: 10.1016/j.envres.2022.113970] [Reference Citation Analysis]
28 Wang F, Liu S, Feng Z, Fu H, Wang M, Wang P, Liu W, Wang C. High-efficient peroxymonosulfate activation for rapid atrazine degradation by FeSx@MoS2 derived from MIL-88A(Fe). Journal of Hazardous Materials 2022. [DOI: 10.1016/j.jhazmat.2022.129723] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
29 Li X, Wang S, Xu B, Zhang X, Xu Y, Yu P, Sun Y. MOF etching-induced Co-doped hollow carbon nitride catalyst for efficient removal of antibiotic contaminants by enhanced perxymonosulfate activation. Chemical Engineering Journal 2022;441:136074. [DOI: 10.1016/j.cej.2022.136074] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
30 Tan J, Wang J, Tan Z, Yu M, Yang Z, Ren Z, Li Y, Zhang Y, Lin X. Efficient activation of peroxydisulfate by a novel magnetic nanocomposite lignin hydrogel for contaminant degradation: Radical and nonradical pathways. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.138504] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Zhang H, Mei Y, Zhu F, Yu F, Komarneni S, Ma J. Efficient activation of persulfate by C@Fe3O4 in visible-light for tetracycline degradation. Chemosphere 2022;306:135635. [PMID: 35810856 DOI: 10.1016/j.chemosphere.2022.135635] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Peng Y, Yan Y, Wang J, Xiang Z, Li Y, Yang J, Yin J, Wang W, Xiao H. CdSe cluster-modified biogenic α-FeOOH based on macroporous biochar for Fenton-like reaction of As(III). Applied Surface Science 2022;589:152872. [DOI: 10.1016/j.apsusc.2022.152872] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Mo F, Zhou Q, Wang Q, Hou Z, Wang J. The applications of MOFs related materials in photo/electrochemical decontamination: An updated review. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.138326] [Reference Citation Analysis]
34 Zhang X, Lan M, Wang F, Yi X, Wang C. ZIF-67-based catalysts in persulfate advanced oxidation processes (PS-AOPs) for water remediation. Journal of Environmental Chemical Engineering 2022;10:107997. [DOI: 10.1016/j.jece.2022.107997] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
35 Wang CC, Ren X, Wang P, Chang C. The state of the art review on photocatalytic Cr(VI) reduction over MOFs-based photocatalysts: From batch experiment to continuous operation. Chemosphere 2022;303:134949. [PMID: 35577127 DOI: 10.1016/j.chemosphere.2022.134949] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Huang P, Zhang P, Wang C, Tang J, Sun H. Enhancement of persulfate activation by Fe-biochar composites: Synergism of Fe and N-doped biochar. Applied Catalysis B: Environmental 2022;303:120926. [DOI: 10.1016/j.apcatb.2021.120926] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 34.0] [Reference Citation Analysis]
37 Janani B, Okla MK, Abdel-Maksoud MA, AbdElgawad H, Thomas AM, Raju LL, Al-Qahtani WH, Khan SS. CuO loaded ZnS nanoflower entrapped on PVA-chitosan matrix for boosted visible light photocatalysis for tetracycline degradation and anti-bacterial application. J Environ Manage 2022;306:114396. [PMID: 35026709 DOI: 10.1016/j.jenvman.2021.114396] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
38 Jiang S, Zhao Z, Chen J, Yang Y, Ding C, Yang Y, Wang Y, Liu N, Wang L, Zhang X. Recent research progress and challenges of MIL-88(Fe) from synthesis to advanced oxidation process. Surfaces and Interfaces 2022. [DOI: 10.1016/j.surfin.2022.101843] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 14.0] [Reference Citation Analysis]
39 Wang S, Yao C, Cai Y, Yang Y, Ma H, Jiang B, Ma J. Construct α-Fe2O3/rGO/PS composite structure for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-persulfate activation coupling system. Journal of Alloys and Compounds 2022;898:162829. [DOI: 10.1016/j.jallcom.2021.162829] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
40 Hang J, Yi XH, Wang CC, Fu H, Wang P, Zhao Y. Heterogeneous photo-Fenton degradation toward sulfonamide matrix over magnetic Fe3S4 derived from MIL-100(Fe). J Hazard Mater 2022;424:127415. [PMID: 34634703 DOI: 10.1016/j.jhazmat.2021.127415] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 24.0] [Reference Citation Analysis]
41 Wang JF, Liu Y, Shao P, Zhu ZY, Ji HD, Du ZX, Wang CC, Liu W, Gao LJ. Efficient ofloxacin degradation via photo-Fenton process over eco-friendly MIL-88A(Fe): Performance, degradation pathways, intermediate library establishment and toxicity evaluation. Environ Res 2022;:112937. [PMID: 35157918 DOI: 10.1016/j.envres.2022.112937] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
42 He Q, Ge M. Visible-light activation of peroxydisulfate by magnetic BiOBr/MnFe2O4 nanocomposite toward degradation of tetracycline. J Mater Sci: Mater Electron 2022;33:5859-77. [DOI: 10.1007/s10854-022-07768-y] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
43 Wang Y, Wang R, Lin N, Xu J, Liu X, Liu N, Zhang X. Degradation of norfloxacin by MOF-derived lamellar carbon nanocomposites based on microwave-driven Fenton reaction: Improved Fe(III)/Fe(II) cycle. Chemosphere 2022;293:133614. [PMID: 35032514 DOI: 10.1016/j.chemosphere.2022.133614] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 35.0] [Reference Citation Analysis]
44 Janani B, Okla MK, Brindha B, Dawoud TM, Alaraidh IA, Soufan W, Abdel-maksoud MA, Aufy M, Studenik CR, Khan SS. Pharmaceuticals removal by synergistic adsorption and S-scheme photocatalysis using nano-CeO 2 -coupled Fe 3 O 4 on a CTAB matrix and investigation of the nanocomposite's antibacterial and antibiofilm activities: intrinsic degradation mechanism. New J Chem . [DOI: 10.1039/d2nj02400d] [Reference Citation Analysis]
45 Wang F, Zhang Z, Yi X, Wang C, Wang P, Wang C, Yu B. A micron-sized Co-MOF sheet to activate peroxymonosulfate for efficient organic pollutant degradation. CrystEngComm. [DOI: 10.1039/d2ce00791f] [Reference Citation Analysis]
46 Zhu ZH, Liu Y, Song C, Hu Y, Feng G, Tang BZ. Porphyrin-Based Two-Dimensional Layered Metal-Organic Framework with Sono-/Photocatalytic Activity for Water Decontamination. ACS Nano 2021. [PMID: 34958557 DOI: 10.1021/acsnano.1c09301] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
47 Du A, Fu H, Wang P, Zhao C, Wang CC. Enhanced catalytic peroxymonosulfate activation for sulfonamide antibiotics degradation over the supported CoSx-CuSx derived from ZIF-L(Co) immobilized on copper foam. J Hazard Mater 2021;426:128134. [PMID: 34959213 DOI: 10.1016/j.jhazmat.2021.128134] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
48 Shi X, Hong P, Huang H, Yang D, Zhang K, He J, Li Y, Wu Z, Xie C, Liu J, Kong L. Enhanced peroxymonosulfate activation by hierarchical porous Fe3O4/Co3S4 nanosheets for efficient elimination of rhodamine B: Mechanisms, degradation pathways and toxicological analysis. J Colloid Interface Sci 2021:S0021-9797(21)02030-0. [PMID: 34857379 DOI: 10.1016/j.jcis.2021.11.118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
49 Du X, Wang S, Ye F, Qingrui Z. Derivatives of metal-organic frameworks for heterogeneous Fenton-like processes: From preparation to performance and mechanisms in wastewater purification - A mini review. Environ Res 2021;:112414. [PMID: 34808127 DOI: 10.1016/j.envres.2021.112414] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]