BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li S, Wang C, Liu Y, Xue B, Jiang W, Liu Y, Mo L, Chen X. Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunction photocatalyst: Mineralization activity, degradation pathways and boosted charge separation mechanism. Chemical Engineering Journal 2021;415:128991. [DOI: 10.1016/j.cej.2021.128991] [Cited by in Crossref: 157] [Cited by in F6Publishing: 164] [Article Influence: 78.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhu L, Shen D, Zhang H, Luo KH, Li C. Fabrication of Z-scheme Bi(7)O(9)I(3)/g-C(3)N(4) heterojunction modified by carbon quantum dots for synchronous photocatalytic removal of Cr (Ⅵ) and organic pollutants. J Hazard Mater 2023;446:130663. [PMID: 36608584 DOI: 10.1016/j.jhazmat.2022.130663] [Reference Citation Analysis]
2 Wu L, Dong J, Zhao L. A photoelectrochemical sensor for detection of 17β-estradiol using high-response type II heterojunction: Implementation of visualization strategy. Sensors and Actuators B: Chemical 2023;378:133135. [DOI: 10.1016/j.snb.2022.133135] [Reference Citation Analysis]
3 Song Z, Wang L. Construction of Ag/Ag2S nanoparticles modified CoSx/ZnIn2S4 heterojunction for boosting photocatalytic organics degradation. Journal of Alloys and Compounds 2023;937:168419. [DOI: 10.1016/j.jallcom.2022.168419] [Reference Citation Analysis]
4 Guo J, Ding C, Gan W, Chen P, Lu Y, Li J, Chen R, Zhang M, Sun Z. High-activity black phosphorus quantum dots/Au/TiO2 ternary heterojunction for efficient levofloxacin removal: Pathways, toxicity assessment, mechanism and DFT calculations. Separation and Purification Technology 2023;307:122838. [DOI: 10.1016/j.seppur.2022.122838] [Reference Citation Analysis]
5 Sun Z, Sun X, Gou X, Zhao X, Shi L, Qu X. In situ formation of a ternary Bi4NbO8Cl/BiOCl/Nb2O5 photocatalyst and its enhanced photocatalytic performance. J Mater Sci 2023. [DOI: 10.1007/s10853-023-08197-w] [Reference Citation Analysis]
6 Jayapandi S, Backialakshmi P, Soundarrajan P, Senthil Pandian M, Ramasamy P, Suresh Kumar S, Gopinathan C. Construction of p–n junction type Ag2O/SnO2 heterostructure photocatalyst for enhanced organic dye degradation under direct sunlight irradiation: Experimental and theoretical investigations. Journal of Materials Research 2023. [DOI: 10.1557/s43578-022-00860-3] [Reference Citation Analysis]
7 Ilyas A, Rafiq K, Abid MZ, Rauf A, Hussain E. Growth of villi-microstructured bismuth vanadate (Vm-BiVO(4)) for photocatalytic degradation of crystal violet dye. RSC Adv 2023;13:2379-91. [PMID: 36741159 DOI: 10.1039/d2ra07070g] [Reference Citation Analysis]
8 Zhu B, Dong Q, Huang J, Song D, Chen L, Chen Q, Zhai C, Wang B, Klemeš JJ, Tao H. Visible-light driven p-n heterojunction formed between α-Bi(2)O(3) and Bi(2)O(2)CO(3) for efficient photocatalytic degradation of tetracycline. RSC Adv 2023;13:1594-605. [PMID: 36688072 DOI: 10.1039/d2ra08162h] [Reference Citation Analysis]
9 Sun L, Li W, Lv G, Wang W, Chen S. Strategy for reducing the carriers transfer antagonistic effect between heterojunction and plasmonic effect and weakening photocorrosion of Cu2O for excellent photocatalytic bacteriostasis. Journal of Colloid and Interface Science 2023;630:556-572. [DOI: 10.1016/j.jcis.2022.10.016] [Reference Citation Analysis]
10 Zhang L, Tan L, Yuan Z, Xu B, Chen W, Tang Y, Li L, Wang J. Engineering of Bi2O2CO3/Ti3C2Tx heterojunctions co-embedded with surface and interface oxygen vacancies for boosted photocatalytic degradation of levofloxacin. Chemical Engineering Journal 2023;452:139327. [DOI: 10.1016/j.cej.2022.139327] [Reference Citation Analysis]
11 Li S, Cai M, Liu Y, Wang C, Yan R, Chen X. Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. Advanced Powder Materials 2023;2:100073. [DOI: 10.1016/j.apmate.2022.100073] [Cited by in Crossref: 10] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
12 Guo Q, Wu Y, Xia L, Yu X, Zhang K, Du Y, Zhang L, Tang H, Cheng J, Shang J, Peng Y, Li Z, Man X, Yang X. Stitching electron localized heptazine units with “carbon patches” to regulate exciton dissociation behavior of carbon nitride for photocatalytic elimination of petroleum hydrocarbons. Chemical Engineering Journal 2023;452:139092. [DOI: 10.1016/j.cej.2022.139092] [Reference Citation Analysis]
13 Chang F, Zhao S, Lei Y, Peng S, Liu D, Kong Y. Ball-milling fabrication of n-p heterojunctions Bi4O5Br2/α-MnS with strengthened photocatalytic removal of bisphenol A in a Z-Scheme model. Separation and Purification Technology 2023;304:122324. [DOI: 10.1016/j.seppur.2022.122324] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Yang Q, Tan G, Zhang B, Feng S, Bi Y, Wang Z, Xia A, Ren H, Liu W. Cs0.33WO3/(t-m)-BiVO4 Double Z-ty .pe Heterojunction Photothermal Synergistic Enhanced Full-spectrum Degradation of Antibiotics. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141378] [Reference Citation Analysis]
15 Tang S, Yang S, Chen Y, Yang Y, Li Z, Zi L, Liu Y, Wang Y, Li Z, Fu Z, Li Y. Ionothermally synthesized S-scheme isotype heterojunction of carbon nitride with significantly enhanced photocatalytic performance for hydrogen evolution and carbon dioxide reduction. Carbon 2023;201:815-28. [DOI: 10.1016/j.carbon.2022.09.071] [Reference Citation Analysis]
16 Fang C, Huang Y, Wang Y, Meng X, Wang X, Liu X. Enhanced removal of tetracycline over CeMO-7 % nanorods via electronic interaction effect: Degradation, kinetics and mechanism. Journal of Water Process Engineering 2022;50:103284. [DOI: 10.1016/j.jwpe.2022.103284] [Reference Citation Analysis]
17 Liu R, Shi Y, Lin L, Wang Z, Liu C, Bi J, Hou Y, Lin S, Wu L. Surface Lewis acid sites and oxygen vacancies of Bi2WO6 synergistically promoted photocatalytic degradation of levofloxacin. Applied Surface Science 2022;605:154822. [DOI: 10.1016/j.apsusc.2022.154822] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Seekonda S, Rani R. Eco-friendly synthesis, characterization, catalytic, antibacterial, antidiabetic, and antioxidant activities of Embelia robusta seeds extract stabilized AgNPs. Journal of Science: Advanced Materials and Devices 2022;7:100480. [DOI: 10.1016/j.jsamd.2022.100480] [Reference Citation Analysis]
19 Wang L, Zhang Z, Xu X, Yu L, Yang T, Zhang X, Zhang Y, Zhu H, Li J, Zhang J. Zn-P bond induced S-scheme heterojunction for efficient photocatalytic tetracycline degradation synergistic H2 generation. Journal of Alloys and Compounds 2022;926:166981. [DOI: 10.1016/j.jallcom.2022.166981] [Reference Citation Analysis]
20 Miao Z, Tao J, Li S, Wu J, Ding Z, Chen X, Ma W, Fan H. Popcorn-like ZnFe2O4/CdS nanospheres for high-efficient photocatalyst degradation of rhodamine B. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;654:130127. [DOI: 10.1016/j.colsurfa.2022.130127] [Reference Citation Analysis]
21 Song K, Zhang C, Zhang Y, Yu G, Zhang M, Zhang Y, Qiao L, Liu M, Yin N, Zhao Y, Tao Y. Efficient tetracycline degradation under visible light irradiation using CuBi2O4/ZnFe2O4 type II heterojunction photocatalyst based on two spinel oxides. Journal of Photochemistry and Photobiology A: Chemistry 2022;433:114122. [DOI: 10.1016/j.jphotochem.2022.114122] [Reference Citation Analysis]
22 Jiao Y, Wang S, Liu Y, Li X, Yang W, Han S, Zhang H, Jiang J. Innovation synthesis of Zn0.5Cd0.5S/WO3 S-scheme heterostructures with significantly enhanced photocatalytic activity. Journal of Physics and Chemistry of Solids 2022;171:110986. [DOI: 10.1016/j.jpcs.2022.110986] [Reference Citation Analysis]
23 Wang J, Wan C, Tang Q, Xu J, Xu N, Yu S, Wang X, Tian H. Hydrothermal synthesis of rGO/Al/CoFe2O4 with low infrared emissivity and strong microwave absorption. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.12.147] [Reference Citation Analysis]
24 Xie Y, Zhou Y, Gao C, Liu L, Zhang Y, Chen Y, Shao Y. Construction of AgBr/BiOBr S-scheme heterojunction using ion exchange strategy for high-efficiency reduction of CO2 to CO under visible light. Separation and Purification Technology 2022;303:122288. [DOI: 10.1016/j.seppur.2022.122288] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Hou M, Yang J, Feng W, She H, Xin C, Li Q, Yu X. Ultrathin carbon-coated Fe-TiO2-x nanostructures for enhanced photocatalysis under visible-light irradiation. Materials Research Bulletin 2022. [DOI: 10.1016/j.materresbull.2022.112143] [Reference Citation Analysis]
26 Kumar R, Janbandhu SY, Sukhadeve GK, Gedam RS. Enhanced visible-light photodegradation of organic pollutants by surface plasmon resonance supported Ag/ZnO heterostructures. Journal of Materials Research 2022. [DOI: 10.1557/s43578-022-00844-3] [Reference Citation Analysis]
27 Zhu J, Cheng Y, Zhang W, Zhao J, Sun Q, Hu X, Miao H. Interfacial charge and surface defect regulation for high-efficiency CdIn2S4-based photoanodes. Applied Surface Science 2022;601:154188. [DOI: 10.1016/j.apsusc.2022.154188] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Hajiali M, Farhadian M, Tangestaninejad S. Novel ZnO nanorods/Bi2MoO6/MIL-101(Fe) heterostructure immobilized on FTO with boosting photocatalytic activity for tetracycline degradation: Reaction mechanism and toxicity assessment. Applied Surface Science 2022;602:154389. [DOI: 10.1016/j.apsusc.2022.154389] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
29 Gogoi D, Makkar P, Korde R, Das MR, Ghosh NN. Exfoliated gC3N4 supported CdS nanorods as a S-scheme heterojunction photocatalyst for the degradation of various textile dyes. Advanced Powder Technology 2022;33:103801. [DOI: 10.1016/j.apt.2022.103801] [Reference Citation Analysis]
30 Sun J, Li X, Li J, Mu M, Yin X. Fabrication of Bi4O5Br2-decorated rod-like MOF-derived MoS2 hierarchical heterostructures for boosting photocatalytic CO2 reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;653:129940. [DOI: 10.1016/j.colsurfa.2022.129940] [Reference Citation Analysis]
31 Ma Y, Qian X, Arif M, Xia J, Fan H, Luo J, He G, Chen H. Z-scheme Bi4O5Br2/MIL-88B(Fe) heterojunction for boosting visible light catalytic oxidation of tetracycline hydrochloride. Applied Surface Science 2022. [DOI: 10.1016/j.apsusc.2022.155667] [Reference Citation Analysis]
32 Chang F, Wei Z, Wang J, Zhao S, Liu D. Ultra-stable type-II heterojunctions Bi4O5I2/FeVO4 of reinforced photocatalytic NOx removal abilities in visible light. Materials Chemistry and Physics 2022;291:126729. [DOI: 10.1016/j.matchemphys.2022.126729] [Reference Citation Analysis]
33 Chang F, Yang C, Wang X, Zhao S, Wang J, Yang W, Dong F, Zhu G, Kong Y. Mechanical ball-milling preparation and superior photocatalytic NO elimination of Z-scheme Bi12SiO20-based heterojunctions with surface oxygen vacancies. Journal of Cleaner Production 2022. [DOI: 10.1016/j.jclepro.2022.135167] [Reference Citation Analysis]
34 Yin Z, Zhang X, Yuan X, Wei W, Xiao Y, Cao S. Constructing TiO2@Bi2O3 multi-heterojunction hollow structure for enhanced visible-light photocatalytic performance. Journal of Cleaner Production 2022;375:134112. [DOI: 10.1016/j.jclepro.2022.134112] [Reference Citation Analysis]
35 Pham M, Tran DPH, Bui X, You S. Rapid fabrication of MgO@g-C 3 N 4 heterojunctions for photocatalytic nitric oxide removal. Beilstein J Nanotechnol 2022;13:1141-54. [DOI: 10.3762/bjnano.13.96] [Reference Citation Analysis]
36 Shen X, Song B, Shen X, Shen C, Shan S, Xue Q, Chen X, Li S. Rationally designed S-scheme heterojunction of C3N4/Bi2MoO6/carbon fiber cloth as a recyclable, macroscopic and efficient photocatalyst for wastewater treatment. Chemical Engineering Journal 2022;445:136703. [DOI: 10.1016/j.cej.2022.136703] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
37 Chen J, Lin W, Mai X, Yang Q. Bi2WO6/UiO-NH2-66 heterojunction photocatalysts with enhanced visible light organic pollutants removal. Journal of Materials Research. [DOI: 10.1557/s43578-022-00749-1] [Reference Citation Analysis]
38 Li B, Li Z, Yu S, Dang Y, Sun X. Co/Ce-modified PbO2 as the active layer in Ti/Sb2O3–SnO2/PbO2 electrodes for efficient degradation of crystal violet. Journal of Materials Research. [DOI: 10.1557/s43578-022-00719-7] [Reference Citation Analysis]
39 Wu Y, Wang Q, Sun W, Dai G, Xie Z. An effective strategy to achieve high photocatalytic activity of a hierarchical ZnO/BiOI structure. Journal of Materials Research. [DOI: 10.1557/s43578-022-00716-w] [Reference Citation Analysis]
40 Chen P, Li X, Ren Z, Wu J, Li Y, Liu W, Li P, Fu Y, Ma J. Enhancing Photocatalysis of Ag Nanoparticles Decorated BaTiO3 Nanofibers through Plasmon-Induced Resonance Energy Transfer Turned by Piezoelectric Field. Catalysts 2022;12:987. [DOI: 10.3390/catal12090987] [Reference Citation Analysis]
41 Wang Y, Liu C, Hu H, Lu Q, Wang H, Zhao C, Du F, Tang N. Fabrication of CuFe2O4/Bi12O17Cl2 photocatalyst with intrinsic p-n junction for highly efficient bisphenol A degradation. Journal of Environmental Sciences 2022. [DOI: 10.1016/j.jes.2022.09.003] [Reference Citation Analysis]
42 Feng X, Yu Z, Shan M, Long R, Li X, Liao K. Z-type ZnAl-LDO/Ag2S heterojunction activated peroxysulfate to degrade tetracycline hydrochloride under visible light efficiently. Chemical Engineering Journal 2022;443:136422. [DOI: 10.1016/j.cej.2022.136422] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
43 Ding C, Guo J, Gan W, Chen P, Li Z, Yin Z, Qi S, Deng S, Zhang M, Sun Z. Ag nanoparticles decorated Z-scheme CoAl-LDH/TiO2 heterojunction photocatalyst for expeditious levofloxacin degradation and Cr(VI) reduction. Separation and Purification Technology 2022;297:121480. [DOI: 10.1016/j.seppur.2022.121480] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Mohanty L, Pattanayak DS, Pradhan D, Dash SK. Synthesis of novel p‐n heterojunction g‐C 3 N 4 /Bi 4 Ti 3 O 12 photocatalyst with improved solar‐light‐driven photocatalytic degradation of organic dyes. Environmental Quality Mgmt 2022. [DOI: 10.1002/tqem.21907] [Reference Citation Analysis]
45 Meng Y, Sun J, Guo Y, Chen J, Lou Y. Two-dimensional polymerized carbon nitride coupled with (0 0 1)-facets-exposed titanium dioxide S-scheme heterojunction for photocatalytic degradation of norfloxacin. Inorganic Chemistry Communications 2022;142:109704. [DOI: 10.1016/j.inoche.2022.109704] [Reference Citation Analysis]
46 Khudhair EM, Khudhair WN, Ammar SH, Mahdi AS. Assembling ZIF-67@Cd0.5Zn0.5S nanocomposites with an enhanced photocatalytic activity. Inorganic Chemistry Communications 2022;142:109639. [DOI: 10.1016/j.inoche.2022.109639] [Reference Citation Analysis]
47 Mu F, Miao X, Cao J, Zhao W, Yang G, Zeng H, Li S, Sun C. Integration of plasmonic effect and S-scheme heterojunction into gold decorated carbon nitride/cuprous oxide catalyst for photocatalysis. Journal of Cleaner Production 2022;360:131948. [DOI: 10.1016/j.jclepro.2022.131948] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
48 Peng D, Zeng H, Xiong J, Xu S, An DS. Improved photocatalytic performance of p-n heterostructure Ag-Ag2MoO4/polyaniline for chromium (VI) reduction and dye degradation. Journal of Alloys and Compounds 2022;912:165063. [DOI: 10.1016/j.jallcom.2022.165063] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
49 Velayati M, Hassani H, Sabouri Z, Mostafapour A, Darroudi M. Green-based biosynthesis of Se nanorods in chitosan and assessment of their photocatalytic and cytotoxicity effects. Environmental Technology & Innovation 2022;27:102610. [DOI: 10.1016/j.eti.2022.102610] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Lu C, Yin Y, Zhou H. Construction of oxygen vacancy enriched Bi2MoO6/BiFeWO6 heterojunction for efficient degradation of organic pollutants. Journal of Solid State Chemistry 2022;312:123210. [DOI: 10.1016/j.jssc.2022.123210] [Reference Citation Analysis]
51 Wang C, Li S, Cai M, Yan R, Dong K, Zhang J, Liu Y. Rationally designed tetra (4-carboxyphenyl) porphyrin/graphene quantum dots/bismuth molybdate Z-scheme heterojunction for tetracycline degradation and Cr(VI) reduction: Performance, mechanism, intermediate toxicity appraisement. Journal of Colloid and Interface Science 2022;619:307-21. [DOI: 10.1016/j.jcis.2022.03.075] [Cited by in Crossref: 40] [Cited by in F6Publishing: 58] [Article Influence: 40.0] [Reference Citation Analysis]
52 Liu Z, Tai Y, Liu J, Liu F, Han B, Fu W, Yang X, Xie H, Liu Q. A novel mechanism for visible-light degradation of phenol by oxygen vacancy Bi2MoO6 homojunction. Applied Surface Science 2022. [DOI: 10.1016/j.apsusc.2022.154671] [Reference Citation Analysis]
53 Alotaibi MR, Shawky A, Zaki Z. Mesoporous MoS2 incorporated zirconia nanocomposites: Simple synthesis, characterization and photocatalytic desulfurization of thiophene under visible light. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.08.229] [Reference Citation Analysis]
54 Zhao Z, Chen C, Wang J, Cheng C, Tang Z, Zhu X, Wang Y, Pan L, Ni Y. Fabrication of CsPbBr3 nanocrystals/Bi2MoO6 nanosheets composites with S-scheme heterojunction for enhanced photodegradation of organic pollutants under visible light irradiation. Journal of Environmental Chemical Engineering 2022;10:108152. [DOI: 10.1016/j.jece.2022.108152] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
55 Huang M, Li J, Wu M, Wang H, Fan M, Huang W, Dong L, Li B. Enhanced visible light absorption CdS-decorated direct Z-scheme g-C3N4/TiO2 for improved photocatalysis and hydrogen generation. Journal of Materials Research. [DOI: 10.1557/s43578-022-00614-1] [Reference Citation Analysis]
56 Yao J, Huang L, Li Y, Liu J, Liu J, Shu S, Huang L, Zhang Z. Facile synthesizing Z-scheme Bi12O15Cl6/InVO4 heterojunction to effectively degrade pollutants and antibacterial under light-emitting diode light. J Colloid Interface Sci 2022;627:224-37. [PMID: 35849856 DOI: 10.1016/j.jcis.2022.07.026] [Reference Citation Analysis]
57 Sabouri Z, Sabouri S, Moghaddas SSTH, Mostafapour A, Gheibihayat SM, Darroudi M. Plant-based synthesis of Ag-doped ZnO/MgO nanocomposites using Caccinia macranthera extract and evaluation of their photocatalytic activity, cytotoxicity, and potential application as a novel sensor for detection of Pb2+ ions. Biomass Conv Bioref . [DOI: 10.1007/s13399-022-02907-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
58 Luo J, Lin P, Zheng P, Zhou X, Ning X, Zhan L, Wu Z, Liu X, Zhou X. In suit constructing S-scheme FeOOH/MgIn2S4 heterojunction with boosted interfacial charge separation and redox activity for efficiently eliminating antibiotic pollutant. Chemosphere 2022;298:134297. [PMID: 35283143 DOI: 10.1016/j.chemosphere.2022.134297] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 30.0] [Reference Citation Analysis]
59 Kammara V, Venkataswamy P, Ravi G, Ramaswamy K, Sunku M, Vithal M. Preparation, characterization and visible light photocatalytic studies of Ag/AgBr/Li2ZrO3 composite. Inorganic Chemistry Communications 2022;141:109504. [DOI: 10.1016/j.inoche.2022.109504] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Luo J, Zhou X, Yang F, Ning X, Zhan L, Wu Z, Zhou X. Generating a captivating S-scheme CuBi2O4/CoV2O6 heterojunction with boosted charge spatial separation for efficiently removing tetracycline antibiotic from wastewater. Journal of Cleaner Production 2022;357:131992. [DOI: 10.1016/j.jclepro.2022.131992] [Cited by in Crossref: 21] [Cited by in F6Publishing: 31] [Article Influence: 21.0] [Reference Citation Analysis]
61 Khairudin K, Bakar NFA, Osman MS. Magnetically Recyclable Flake-like BiOI-Fe3O4 Microswimmers for Fast and Efficient Degradation of Microplastics. Journal of Environmental Chemical Engineering 2022. [DOI: 10.1016/j.jece.2022.108275] [Reference Citation Analysis]
62 Wu D, Zhang X, Liu S, Ren Z, Xing Y, Jin X, Ni G. Fabrication of a Z-scheme CeO2/Bi2O4 heterojunction photocatalyst with superior visible-light responsive photocatalytic performance. Journal of Alloys and Compounds 2022;909:164671. [DOI: 10.1016/j.jallcom.2022.164671] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
63 Wu X, Zhang C, Nie Z, Zhang Y, Bai Q, Yin Z, Zhang S, Qu X, Du F, Shi L. Cookies-like Ag2S/Bi4NbO8Cl heterostructures for high efficient and stable photocatalytic degradation of refractory antibiotics utilizing full-spectrum solar energy. Separation and Purification Technology 2022;292:120969. [DOI: 10.1016/j.seppur.2022.120969] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Özkal C. Synthesis of CuFe 2 O 4 ‐Ti and CuFe 2 O 4 ‐Ti‐GO nanocomposite photocatalysts using green‐synthesized CuFe 2 O 4 : determination of photocatalytic activity, bacteria inactivation and antibiotic degradation potentials under visible light. J of Chemical Tech & Biotech 2022;97:1842-1859. [DOI: 10.1002/jctb.7058] [Reference Citation Analysis]
65 Guo X, He S, Meng Z, Wang Y, Peng Y. Ag@ZIF-8/g-C3N4 Z-scheme photocatalyst for the enhanced removal of multiple classes of antibiotics by integrated adsorption and photocatalytic degradation under visible light irradiation. RSC Adv 2022;12:17919-31. [PMID: 35765331 DOI: 10.1039/d2ra02194c] [Reference Citation Analysis]
66 Osotsi MI, Xiong Y, Fu S, Zhang W, Di Z. Bioinspired hierarchical 3D flower-in-ridge hybrid structure for the photodegradation of persistent organic pollutants. Nanoscale 2022;14:8130-44. [PMID: 35615970 DOI: 10.1039/d2nr01424f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
67 Gao H, Wang S, Wang Y, Yang H, Wang F, Tang S, Yi Z, Li D. CaMoO4/CaWO4 heterojunction micro/nanocomposites with interface defects for enhanced photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;642:128642. [DOI: 10.1016/j.colsurfa.2022.128642] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
68 Chen J, Zhu H, Ren Q, Chen S, Ding Y, Jin Z, Xiong C, Guo W, Jia X. Efficient degradation of atrazine residues in wastewater by persulfate assisted Ag3VO4/Bi2MoO6/diatomite under visible light. Journal of Environmental Chemical Engineering 2022;10:107938. [DOI: 10.1016/j.jece.2022.107938] [Reference Citation Analysis]
69 Sivaranjani P, Janani B, Thomas AM, Raju LL, Khan SS. Recent development in MoS2-based nano-photocatalyst for the degradation of pharmaceutically active compounds. Journal of Cleaner Production 2022;352:131506. [DOI: 10.1016/j.jclepro.2022.131506] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
70 Chen R, Zhou W, Qu W, Wang Y, Shi L, Chen S. A novel hierarchical nanostructured S-scheme RGO/Bi2MoO6/Bi2WO6 heterojunction: Excellent photocatalytic degradation activity for pollutants. Applied Surface Science 2022;588:152788. [DOI: 10.1016/j.apsusc.2022.152788] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
71 Jabbar ZH, Graimed BH. Recent developments in industrial organic degradation via semiconductor heterojunctions and the parameters affecting the photocatalytic process: A review study. Journal of Water Process Engineering 2022;47:102671. [DOI: 10.1016/j.jwpe.2022.102671] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
72 Chen B, Ding M, Tan H, Wang S, Liu L, Wang F, Tian H, Gao J, Ye Y, Fu D, Jiang J, Ou J, Wilson DA, Tu Y, Peng F. Visible-light-driven TiO2@N-Au nanorobot penetrating the vitreous. Applied Materials Today 2022;27:101455. [DOI: 10.1016/j.apmt.2022.101455] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
73 Ichipi EO, Tichapondwa SM, Chirwa EM. Plasmonic effect and bandgap tailoring of Ag/Ag2S doped on ZnO nanocomposites for enhanced visible-light photocatalysis. Advanced Powder Technology 2022;33:103596. [DOI: 10.1016/j.apt.2022.103596] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
74 Wang F, Zhan S, Zhou F, He Q, Zhang C, Lai J, Song Y. In-situ synthesis of Bi0 on 3D-3D-shaped (BiO)2CO3 surface for photocatalytic inactivation: Metal self-doping mechanism. Journal of Environmental Chemical Engineering 2022;10:107576. [DOI: 10.1016/j.jece.2022.107576] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Yao L, He X, Lv J, Xu G, Bao Z, Cui J, Yu D, Wu Y. Efficient degradation of ciprofloxacin by Co3O4/Si nanoarrays heterojunction activated peroxymonosulfate under simulated sunlight: Performance and mechanism. Journal of Environmental Chemical Engineering 2022;10:107397. [DOI: 10.1016/j.jece.2022.107397] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
76 Gao L, Chen Z, Zheng H, Hu J. A distinct hollow spindle-like CdIn2S4 photocatalyst for high-efficiency tetracycline removal. Materials Today Chemistry 2022;24:100800. [DOI: 10.1016/j.mtchem.2022.100800] [Reference Citation Analysis]
77 Dai B, Zhao W, Wei W, Cao J, Yang G, Li S, Sun C, Leung DY. Photocatalytic reduction of CO2 and degradation of Bisphenol-S by g-C3N4/Cu2O@Cu S-scheme heterojunction: Study on the photocatalytic performance and mechanism insight. Carbon 2022;193:272-84. [DOI: 10.1016/j.carbon.2022.03.038] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
78 Dai B, Zhao W, Huang H, Li S, Yang G, Wu H, Sun C, Leung DY. Constructing an ohmic junction of copper@ cuprous oxide nanocomposite with plasmonic enhancement for photocatalysis. Journal of Colloid and Interface Science 2022;616:163-76. [DOI: 10.1016/j.jcis.2022.02.056] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
79 Li S, Wang C, Cai M, Liu Y, Dong K, Zhang J. Designing oxygen vacancy mediated bismuth molybdate (Bi2MoO6)/N-rich carbon nitride (C3N5) S-scheme heterojunctions for boosted photocatalytic removal of tetracycline antibiotic and Cr(VI): Intermediate toxicity and mechanism insight. J Colloid Interface Sci 2022;624:219-32. [PMID: 35660890 DOI: 10.1016/j.jcis.2022.05.151] [Cited by in Crossref: 21] [Cited by in F6Publishing: 33] [Article Influence: 21.0] [Reference Citation Analysis]
80 Cheng Y, Gong M, Xu T, Liu E, Fan J, Miao H, Hu X. Epitaxial Grown Sb2Se3@Sb2S3 Core-Shell Nanorod Radial-Axial Hierarchical Heterostructure with Enhanced Photoelectrochemical Water Splitting Performance. ACS Appl Mater Interfaces 2022. [PMID: 35579330 DOI: 10.1021/acsami.2c05551] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
81 Xin C, Wang W, Xu M, Yu X, Li M, Li S. Construction of Au and C60 quantum dots modified materials of Institute Lavoisier-125(Ti) architectures for antibiotic degradation: Performance, toxicity assessment, and mechanistic insight. J Colloid Interface Sci 2022;623:417-31. [PMID: 35597012 DOI: 10.1016/j.jcis.2022.05.028] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
82 Liu J, Ma M, Yu X, Xin C, Li M, Li S. Constructing Ag decorated ZnS1-x quantum dots/Ta2O5-x nanospheres for boosted tetracycline removal: Synergetic effects of structural defects, S-scheme heterojunction, and plasmonic effects. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.05.079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
83 Behnood R, Sodeifian G. Synthesis of Ag4Bi2O5 nanoparticles and evaluation of their photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry 2022;427:113776. [DOI: 10.1016/j.jphotochem.2022.113776] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Li J, Li M, Li Y, Guo X, Jin Z. Lotus-leaf-like Bi2O2CO3 nanosheet combined with Mo2S3 for higher photocatalytic hydrogen evolution. Separation and Purification Technology 2022;288:120588. [DOI: 10.1016/j.seppur.2022.120588] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
85 Xue Y, Tang W, Gu H, Wei M, Guo E, Lu Q, Pang Y. Flexible Bi2MoO6/N-doped carbon nanofiber membrane enables tetracycline photocatalysis for environmentally safe growth of Vigna radiata. Journal of Alloys and Compounds 2022;902:163860. [DOI: 10.1016/j.jallcom.2022.163860] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
86 Belousov AS, Fukina DG, Koryagin AV. Metal–organic framework‐based heterojunction photocatalysts for organic pollutant degradation: design, construction, and performances. J of Chemical Tech & Biotech. [DOI: 10.1002/jctb.7091] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
87 Lee J, Mun S, Lee S, Park S. Promoted charge separation and specific surface area via interlacing of N-doped titanium dioxide nanotubes on carbon nitride nanosheets for photocatalytic degradation of Rhodamine B. Nanotechnology Reviews 2022;11:1592-605. [DOI: 10.1515/ntrev-2022-0085] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Xu G, Ma C, Wei J, Yang X, Wang T, Tan C, Yang K, Jiang K, Yu G, Zhang C, Li X. Enhanced photocatalytic activity of 3D hierarchical RP/BP/BiOCOOH via oxygen vacancies and double heterojunctions. Chemosphere 2022;:134485. [PMID: 35385767 DOI: 10.1016/j.chemosphere.2022.134485] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
89 Li J, Wang B, Pang Y, Sun M, Liu S, Fang W, Chen L. Fabrication of 0D/1D Bi2MoO6/Bi/TiO2 heterojunction with effective interfaces for boosted visible-light photocatalytic degradation of tetracycline. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;638:128297. [DOI: 10.1016/j.colsurfa.2022.128297] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
90 Luo J, Zhao J, Jiang D, Zhan Q. Z-scheme 0D/3D p-Ag6Si2O7 nanoparticles-decorated n-Bi2O2CO3 micro-flowers heterojunction photocatalyst for efficient degradation of organic contaminants. Journal of Alloys and Compounds 2022;899:163150. [DOI: 10.1016/j.jallcom.2021.163150] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
91 Akshhayya C, Okla MK, Mohebaldin A, Al-ghamdi AA, Thomas AM, Raju LL, Abdelgawad H, Abdel-maksoud MA, Khan SS. Synthesis of novel p-n heterojunction by the decoration of CuFe2O4 on ZnO nanorod: Characterization, enhanced visible light driven photocatalytic activity and intrinsic mechanism. Surfaces and Interfaces 2022;29:101726. [DOI: 10.1016/j.surfin.2022.101726] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
92 Swamy NK, Mohana KNS, Yashas SR. GNR@CeO2 heterojunction as a novel sonophotocatalyst: Degradation of tetracycline hydrochloride, kinetic modeling and synergistic effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;639:128324. [DOI: 10.1016/j.colsurfa.2022.128324] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
93 Shu Q, Qiu W, Luo M, Xiao L. Copper Selenides Controlled Hydrothermal Synthesis of Porous Micro-Networks with Highly-efficient Photocatalysis. Materials Today Sustainability 2022. [DOI: 10.1016/j.mtsust.2022.100135] [Reference Citation Analysis]
94 Pan J, Sun H, Chen K, Zhang Y, Shan P, Shi W, Guo F. Nanodiamonds decorated yolk-shell ZnFe2O4 sphere as magnetically separable and recyclable composite for boosting antibiotic degradation performance. Chinese Journal of Chemical Engineering 2022. [DOI: 10.1016/j.cjche.2022.04.008] [Reference Citation Analysis]
95 Zhang M, Chen W, Choi W, Yu J, Deng Y, Xie X, Lin Z. Ternary Biocidal-Photocatalytic-Upconverting Nanocomposites for Enhanced Antibacterial Activity. ACS Sustainable Chem Eng 2022;10:4741-9. [DOI: 10.1021/acssuschemeng.2c00416] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
96 Xue Y, Xu Y, Yan Q, Zhu K, Ye K, Yan J, Wang Q, Cao D, Wang G. Coupling of Ru nanoclusters decorated mixed-phase (1T and 2H) MoSe2 on biomass-derived carbon substrate for advanced hydrogen evolution reaction. J Colloid Interface Sci 2022;617:594-603. [PMID: 35303643 DOI: 10.1016/j.jcis.2022.03.033] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
97 Tang M, Xia Y, Yang D, Lu S, Zhu X, Tang R, Zhang W. Ag Decoration and SnO2 Coupling Modified Anatase/Rutile Mixed Crystal TiO2 Composite Photocatalyst for Enhancement of Photocatalytic Degradation towards Tetracycline Hydrochloride. Nanomaterials 2022;12:873. [DOI: 10.3390/nano12050873] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
98 Cheng Y, Yang H, Zhang J, Xiong X, Chen C, Zeng J, Xi J, Yuan Y, Ji Z. Novel 0D/2D ZnSe/SnSe heterojunction photocatalysts exhibiting enhanced photocatalytic and photoelectrochemical activities. Journal of Alloys and Compounds 2022;897:163123. [DOI: 10.1016/j.jallcom.2021.163123] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
99 Qian Y, Huang J, Chen J, Xue G, Zhou Z, Gao P. Activation of peracetic acid by RuO2/MWCNTs to degrade sulfamethoxazole at neutral condition. Chemical Engineering Journal 2022;431:134217. [DOI: 10.1016/j.cej.2021.134217] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
100 Cao Y, El-shorbagy M, Sharma K, Alamri S, Rajhi AA, Anqi AE, Aly AA, Felemban BF. In-situ synthesis of a novel ZnO/CuCo2S4 p-n heterojunction photocatalyst with improved phenol and rhodamine B degradation performance and investigating the mechanism of charge carrier separation. Journal of Photochemistry and Photobiology A: Chemistry 2022;425:113676. [DOI: 10.1016/j.jphotochem.2021.113676] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
101 Lu C, Zhou H. The Ag-based SPR effect drives effective degradation of organic pollutants by BiOCOOH/AgBr composites. Advanced Powder Technology 2022;33:103428. [DOI: 10.1016/j.apt.2022.103428] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Jiang Y, Jiang J, Ran Q, Li T, He H, Liu J, Chu H, Sui M, Dong B. Quantum dots modified bismuth-based hierarchical dual Z-scheme heterojunction for photocatalytic performance enhancement: Mineralization, degradation pathways and mechanism. Chemical Engineering Journal Advances 2022;9:100240. [DOI: 10.1016/j.ceja.2022.100240] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 Li H, Zhong J, Zhang Y, Li J. Construction of flower-like Ag/AgBr/BiOBr heterostructures with boosted photocatalytic activity. Inorganic Chemistry Communications 2022;137:109254. [DOI: 10.1016/j.inoche.2022.109254] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
104 Wang B, Li E, Zong Y, Wang X, Yuan J, Zhang F. Fabricating hollow, multishell CeO2 microspheres for enhanced photocatalytic degradation of RhB under visible light. Journal of Materials Research. [DOI: 10.1557/s43578-022-00513-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
105 Wang J, Shao BLX, Ji X, Tian G, Ge H. CdS and Ag synergistically improved the performance of g-C3N4 on visible-light photocatalytic degradation of pollution. Environ Sci Pollut Res Int 2022. [PMID: 35188610 DOI: 10.1007/s11356-022-19204-z] [Reference Citation Analysis]
106 Liu H, Hao X, Liu Y, Yan A, Zang Z. Hydrothermal Synthesis and Photocatalytic Properties of Graphene@Ag/AgSb2O5.8 Composites: Reaction Laws of the Composites in Sintering Process. Advances in Materials Science and Engineering 2022;2022:1-11. [DOI: 10.1155/2022/3817050] [Reference Citation Analysis]
107 Yu J, Guo Y, Zhao Y, Hou M, Yu X, Li S. Visible-light photocatalytic tetracycline degradation over nanodots-assembled N-ZrO2−x nanostructures: Performance, degradation pathways and mechanistic insight. Journal of Alloys and Compounds 2022;895:162582. [DOI: 10.1016/j.jallcom.2021.162582] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
108 Gao Y, Zhai X, Zhang Y, Guan F, Liu N, Wang X, Zhang J, Hou B, Duan J. Developing high photocatalytic antibacterial Zn electrodeposited coatings through Schottky junction with Fe3+-doped alkalized g-C3N4 photocatalysts. Nano Materials Science 2022. [DOI: 10.1016/j.nanoms.2022.01.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
109 Zhang Y, Cao X, Yang Y, Guan S, Wang X, Li H, Zheng X, Zhou L, Jiang Y, Gao J. Visible light assisted enzyme-photocatalytic cascade degradation of organophosphorus pesticides. Green Chemical Engineering 2022. [DOI: 10.1016/j.gce.2022.02.001] [Reference Citation Analysis]
110 Li S, Wang C, Liu Y, Cai M, Wang Y, Zhang H, Guo Y, Zhao W, Wang Z, Chen X. Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: Performance, mechanism insight and toxicity assessment. Chemical Engineering Journal 2022;429:132519. [DOI: 10.1016/j.cej.2021.132519] [Cited by in Crossref: 135] [Cited by in F6Publishing: 144] [Article Influence: 135.0] [Reference Citation Analysis]
111 Arumugam B, Ramalingam RJ, Chen S, Subburaj S, Ramasundaram S, Al-lohedan H, Ramaraj SK. The design of praseodymium galena nanospheres: An effective photocatalyst for the remediation of carcinogenic phenothiazine and chromium contaminants. Journal of Physics and Chemistry of Solids 2022. [DOI: 10.1016/j.jpcs.2022.110660] [Reference Citation Analysis]
112 Chang F, Wang X, Yang C, Li S, Wang J, Yang W, Dong F, Hu X, Liu D, Kong Y. Enhanced photocatalytic NO removal with the superior selectivity for NO2−/NO3− species of Bi12GeO20-based composites via a ball-milling treatment: Synergetic effect of surface oxygen vacancies and n-p heterojunctions. Composites Part B: Engineering 2022;231:109600. [DOI: 10.1016/j.compositesb.2021.109600] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
113 Guo Y, Xin C, Dai L, Zhang Y, Yu X, Guo Q. Layered and poriferous (Al,C)-Ta2O5 mesocrystals supported CdS quantum dots for high-efficiency photodegradation of organic contaminants. Separation and Purification Technology 2022;284:120297. [DOI: 10.1016/j.seppur.2021.120297] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
114 Khan H, Kang S, Charles H, Lee CS. Epitaxial Growth of Flower-Like MoS2 on One-Dimensional Nickel Titanate Nanofibers: A “Sweet Spot” for Efficient Photoreduction of Carbon Dioxide. Front Chem 2022;10:837915. [DOI: 10.3389/fchem.2022.837915] [Reference Citation Analysis]
115 Zhang W, Cheng Y, Zhao J, Li Q, Wang J, Zhu J, Miao H, Hu X. A novel two-step strategy to fabricate phase-pure SnS photoelectrodes with tunable conductivity: formation mechanism and photoelectrochemical properties. J Phys D: Appl Phys 2022;55:165502. [DOI: 10.1088/1361-6463/ac472e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
116 Wei H, Sun E, Zhang S, Li Y, Bi Y, Zhao X, Liu F, Wang Y. Adsorption/photocatalytic hierarchical nanomaterial g-C3N4/Bi2WO6/ACF composites to the dynamic degradation of toluene. Journal of Materials Research. [DOI: 10.1557/s43578-021-00477-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
117 Farid MA, Ijaz S, Ashiq MN, Ehsan MF, Gul F, Batool SR, Athar M, ul Hassan S. Synthesis of mesoporous zirconium manganese mixed metal oxide nanowires for photocatalytic reduction of CO2. Journal of Materials Research. [DOI: 10.1557/s43578-021-00463-4] [Reference Citation Analysis]
118 Li S, Zhang L, Guo Y, Zhang Q, Aleksandrzak M, Mijowska E, Chen X. Fabrication and characterization of a TiBs@MCN cable-like photocatalyst with high photocatalytic performance under visible light irradiation. New J Chem 2022;46:6319-29. [DOI: 10.1039/d2nj00414c] [Reference Citation Analysis]
119 Zhang M, Xu H, Wu L, Tan Y, Kong D, Yimiti M. Photocatalytic degradation of lignin by low content g-C 3 N 4 modified TiO 2 under visible light. New J Chem 2022;46:8644-52. [DOI: 10.1039/d2nj00859a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
120 Li S, Wang C, Cai M, Yang F, Liu Y, Chen J, Zhang P, Li X, Chen X. Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction. Chemical Engineering Journal 2022;428:131158. [DOI: 10.1016/j.cej.2021.131158] [Cited by in Crossref: 137] [Cited by in F6Publishing: 139] [Article Influence: 137.0] [Reference Citation Analysis]
121 Saeed M, Al Wadai N, Ben Farhat L, Baig A, Nabgan W, Iqbal M. Co3O4-Bi2O3 heterojunction: An effective photocatalyst for photodegradation of rhodamine B dye. Arabian Journal of Chemistry 2022. [DOI: 10.1016/j.arabjc.2022.103732] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
122 Guo Y, Xu G, Xu Z, Guo Y. Developing visible light responsive BN/NTCDA heterojunctions with a good degradation performance for tetracycline. New J Chem 2022. [DOI: 10.1039/d2nj04395e] [Reference Citation Analysis]
123 Zhang L, Dai L, Li X, Yu W, Li S, Guan J. 3D structured TiO 2 -based aerogel photocatalyst for the high-efficiency degradation of toluene gas. New J Chem 2022;46:2272-81. [DOI: 10.1039/d1nj05395g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
124 Xu X, Deng F, Shao P, Dionysiou DD, Luo X, Li X, Zhang S, Liu X, Liu M. Internal electric field driving separation and migration of charge carriers via Z-scheme path in AgIn5S8/ZnO heterojunction for efficient decontamination of pharmaceutical pollutants. Chemical Engineering Journal 2022;428:132096. [DOI: 10.1016/j.cej.2021.132096] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 19.0] [Reference Citation Analysis]
125 Qiu J, Su J, Muhammad N, Zheng W, Yue C, Liu F, Zuo J, Ding Z. Facile encapsulating Ag nanoparticles into a Tetrathiafulvalene-based Zr-MOF for enhanced Photocatalysis. Chemical Engineering Journal 2022;427:131970. [DOI: 10.1016/j.cej.2021.131970] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
126 Li X, Li K, Du J, Pei M, Song C, Guo X. Nitrogen-rich porous polymeric carbon nitride with enhanced photocatalytic activity for synergistic removal of organic and heavy metal pollutants. Environ Sci : Nano 2022;9:2388-2401. [DOI: 10.1039/d2en00243d] [Reference Citation Analysis]
127 Ahmed K, Wang Y, Bai Y, Sekar K, Li W. A carbon nanowire-promoted Cu 2 O/TiO 2 nanocomposite for enhanced photoelectrochemical performance. New J Chem . [DOI: 10.1039/d2nj03116g] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
128 Huang Z, Zhu D, Wang H, Luo J, Zhao C, Du F. Facile fabrication of electrospun g-C 3 N 4 /Bi 12 O 17 Cl 2 /poly(acrylonitrile- co -maleic acid) heterojunction nanofibers for boosting visible-light catalytic ofloxacin degradation. New J Chem . [DOI: 10.1039/d1nj05928a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
129 Okla MK, Subhiksha V, Akshhayya C, Al-amri SS, Alaraidh IA, Al-ghamdi AA, Soufan W, Abdel-maksoud MA, Aufy M, Studenik CR, Khan SS. In situ construction of ZnFe 2 O 4 nanospheres on CoO nanosheets for durable photodegradation of organics: kinetics and mechanistic insights. New J Chem . [DOI: 10.1039/d2nj02272a] [Reference Citation Analysis]
130 Ma W, Zhang C, Hao S, Xing Y, Zhao G, Qiu S, Zhang C, Wang X. Construction of a multidimensional CdS@MoS 2 heterojunction for enhancing the activity and transfer efficiency of photogenerated carriers. New J Chem 2022;46:11934-45. [DOI: 10.1039/d2nj01043g] [Reference Citation Analysis]
131 Chen J, Liu X, Que M, Yang L, Zheng H, Liu Z, Yang T, Li Y, Yang X, Zhu S. In situ forming heterointerface in g-C3N4/BiOBr photocatalyst for enhancing the photocatalytic activity. Journal of Physics and Chemistry of Solids 2022. [DOI: 10.1016/j.jpcs.2022.110609] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
132 Jiang H, Li Y, Wang X, Hong X. Construction of a hydrangea-like Bi 2 WO 6 /BiOCl composite as a high-performance photocatalyst. New J Chem . [DOI: 10.1039/d1nj05409k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
133 Tong Y, Shen J, Zhao S, Chen Z, Kang J, Wang B, Sun L, Bi L. Comparative study of BiVO 4 and BiVO 4 /Ag 2 O regarding their properties and photocatalytic degradation mechanism. New J Chem . [DOI: 10.1039/d2nj00920j] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
134 Wu C, Xing Z, Fang B, Cui Y, Li Z, Zhou W. Polyoxometalate-based yolk@shell dual Z-scheme superstructure tandem heterojunction nanoreactors: encapsulation and confinement effects. J Mater Chem A 2021;10:180-91. [DOI: 10.1039/d1ta07800c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
135 Kaushik B, Rana P, Rawat D, Solanki K, Yadav S, Rana P, Sharma RK. Magnetically separable type-II semiconductor based ZnO/MoO 3 photocatalyst: a proficient system for heteroarenes arylation and rhodamine B degradation under visible light. New J Chem 2022;46:8478-88. [DOI: 10.1039/d2nj00906d] [Reference Citation Analysis]
136 Li S, Cai M, Liu Y, Zhang J, Wang C, Zang S, Li Y, Zhang P, Li X. In situ construction of a C 3 N 5 nanosheet/Bi 2 WO 6 nanodot S-scheme heterojunction with enhanced structural defects for the efficient photocatalytic removal of tetracycline and Cr( vi ). Inorg Chem Front . [DOI: 10.1039/d2qi00317a] [Cited by in Crossref: 68] [Cited by in F6Publishing: 76] [Article Influence: 68.0] [Reference Citation Analysis]
137 Zhao X, Chen J, Zhao C, Liu Y, Liang Q, Zhou M, Li Z, Zhou Y. Construction ZnIn2S4/Ti3C2 of 2D/2D heterostructures with enhanced visible light photocatalytic activity: A combined experimental and first-principles DFT study. Applied Surface Science 2021;570:151183. [DOI: 10.1016/j.apsusc.2021.151183] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
138 Chen W, Huang J, He Z, Ji X, Zhang Y, Sun H, Wang K, Su Z. Accelerated photocatalytic degradation of tetracycline hydrochloride over CuAl2O4/g-C3N4 p-n heterojunctions under visible light irradiation. Separation and Purification Technology 2021;277:119461. [DOI: 10.1016/j.seppur.2021.119461] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 26.0] [Reference Citation Analysis]
139 Yang Z, Chen Y, Xu L, Liu C, Jiang Z. A novel Z-scheme Bi4O5I2/NiFe2O4 heterojunction photocatalyst with reliable recyclability for Rhodamine B degradation. Advanced Powder Technology 2021;32:4522-32. [DOI: 10.1016/j.apt.2021.10.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
140 Ali FS, Al Marzouqi F, Banu AA, Fathima MI, Jahangir ARM, Rafi KM, Ayeshamariam A. Novel synthesis of cerium oxide nano photocatalyst by a hydrothermal method. J Semicond 2021;42:122801. [DOI: 10.1088/1674-4926/42/12/122801] [Reference Citation Analysis]
141 Sharma S, Basu S. Construction of an efficient and durable hierarchical porous CuO/SiO2 monolith for synergistically boosting the visible-light-driven degradation of organic pollutants. Separation and Purification Technology 2021;279:119759. [DOI: 10.1016/j.seppur.2021.119759] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
142 Jabbar ZH, Ammar SH, Esmail Ebrahim S. Enhanced visible-light photocatalytic bacterial inhibition using recyclable magnetic heterogeneous nanocomposites (Fe3O4@SiO2@Ag2WO4@Ag2S) in core/shell structure. Environmental Nanotechnology, Monitoring & Management 2021;16:100601. [DOI: 10.1016/j.enmm.2021.100601] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
143 Huang J, Liu S, Long W, Wang Q, Yu X, Li S. Highly enhanced photodegradation of emerging pollutants by Ag/AgCl/Ta2O5−x mesocrystals. Separation and Purification Technology 2021;279:119733. [DOI: 10.1016/j.seppur.2021.119733] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
144 Wang R, Zhu P, Liu M, Xu J, Duan M, Luo D. Synthesis and characterization of magnetic ZnFe2O4/Bi0-Bi2MoO6 with Z-scheme heterojunction for antibiotics degradation under visible light. Separation and Purification Technology 2021;277:119339. [DOI: 10.1016/j.seppur.2021.119339] [Cited by in Crossref: 25] [Cited by in F6Publishing: 31] [Article Influence: 12.5] [Reference Citation Analysis]
145 Gui MM, Lee WC, Putri LK, Kong XY, Tan L, Chai S. Photo-Driven Reduction of Carbon Dioxide: A Sustainable Approach Towards Achieving Carbon Neutrality Goal. Front Chem Eng 2021;3:744911. [DOI: 10.3389/fceng.2021.744911] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
146 Phuruangrat A, Buapoon S, Bunluesak T, Suebsom P, Thongtem S, Thongtem T. Intermetallic PdAg nanoparticles supported on Bi2MoO6 nanoplates and their enhanced photocatalytic activities. Inorganic Chemistry Communications 2021;133:108895. [DOI: 10.1016/j.inoche.2021.108895] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
147 Zhao Y, Nie L, Yang H, Song K, Hou H. Tailored fabrication of TiO2/In2O3 hybrid mesoporous nanofibers towards enhanced photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;629:127455. [DOI: 10.1016/j.colsurfa.2021.127455] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
148 Wu H, Wang D, Zhou P, Xie M, Jing J, Xu Y, Xie J. Probing effective charge migration and highly improved photocatalytic activity on Polyaniline/Zn3In2S6 nano-flower under long wavelength light. Separation and Purification Technology 2021;274:119004. [DOI: 10.1016/j.seppur.2021.119004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
149 Shkir M, Palanivel B, Khan A, Kumar M, Chang JH, Mani A, AlFaify S. Enhanced photocatalytic activities of facile auto-combustion synthesized ZnO nanoparticles for wastewater treatment: An impact of Ni doping. Chemosphere 2021;:132687. [PMID: 34718012 DOI: 10.1016/j.chemosphere.2021.132687] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
150 Wu Y, Ji H, Liu Q, Sun Z, Li P, Ding P, Guo M, Yi X, Xu W, Wang CC, Gao S, Wang Q, Liu W, Chen S. Visible light photocatalytic degradation of sulfanilamide enhanced by Mo doping of BiOBr nanoflowers. J Hazard Mater 2021;424:127563. [PMID: 34736201 DOI: 10.1016/j.jhazmat.2021.127563] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
151 Zhou Y, Jiao W, Xie Y, He F, Ling Y, Yang Q, Zhao J, Ye H, Hou Y. Enhanced photocatalytic CO2-reduction activity to form CO and CH4 on S-scheme heterostructured ZnFe2O4/Bi2MoO6 photocatalyst. J Colloid Interface Sci 2021:S0021-9797(21)01730-6. [PMID: 34753624 DOI: 10.1016/j.jcis.2021.10.053] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
152 Di L, Sun X, Xian T, Li H, Gao Y, Yang H. Preparation of Z-scheme Au-Ag2S/Bi2O3 composite by selective deposition method and its improved photocatalytic degradation and reduction activity. Advanced Powder Technology 2021;32:3672-88. [DOI: 10.1016/j.apt.2021.08.018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
153 Chen Z, Guo F, Sun H, Shi Y, Shi W. Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution. J Colloid Interface Sci 2022;607:1391-401. [PMID: 34583044 DOI: 10.1016/j.jcis.2021.09.095] [Cited by in Crossref: 51] [Cited by in F6Publishing: 62] [Article Influence: 25.5] [Reference Citation Analysis]
154 Zhu H, Ren Q, Ding Y, Zhu C, Zong Y, Hu X, Jin Z. One-step synthesis of Ag3VO4/diatomite composite material for efficient degradation of organic dyes under visible light. Inorganic Chemistry Communications 2021;131:108759. [DOI: 10.1016/j.inoche.2021.108759] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
155 Gao X, Zhang Y, Yin B, Liu Y, Nguyen TT, Zhang S, Wei Y, Du C, Li L, Guo M. Table tennis bat poplar baseplate-derived bismuth molybdate with efficient visible-light photocatalytic activity. Colloid and Interface Science Communications 2021;44:100478. [DOI: 10.1016/j.colcom.2021.100478] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
156 Srivastava RR, Kumar Vishwakarma P, Yadav U, Rai S, Umrao S, Giri R, Saxena PS, Srivastava A. 2D SnS2 Nanostructure-Derived Photocatalytic Degradation of Organic Pollutants Under Visible Light. Front Nanotechnol 2021;3:711368. [DOI: 10.3389/fnano.2021.711368] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
157 Uma K, Singaravelu CM, Kavinkumar V, Jothivenkatachalam K, Lin J. Ultrasonically modified P25-TiO2 /In2O3 heterostructured nanoparticles: An efficient dual- responsive photocatalyst for solution and gas phase reactions. Journal of the Taiwan Institute of Chemical Engineers 2021;125:257-66. [DOI: 10.1016/j.jtice.2021.06.040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
158 Cheng L, Chen Z, Fu S, Pan Y, Jiao Z. Electron beam assistant controllable synthesis of 2D, 3D and 0D CuxO loaded on graphene for high-performance bifunctional photocatalytic and Fenton-like catalysts. Solid State Sciences 2021;118:106663. [DOI: 10.1016/j.solidstatesciences.2021.106663] [Reference Citation Analysis]
159 Zheng X, Li Y, Peng H, Wen J. Solar-light induced photoreduction of CO2 using nonthermal plasma sulfurized MoO3@MoS2-CuS composites. Journal of Environmental Chemical Engineering 2021;9:105469. [DOI: 10.1016/j.jece.2021.105469] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
160 Wang C, Cai M, Liu Y, Yang F, Zhang H, Liu J, Li S. Facile construction of novel organic-inorganic tetra (4-carboxyphenyl) porphyrin/Bi2MoO6 heterojunction for tetracycline degradation: Performance, degradation pathways, intermediate toxicity analysis and mechanism insight. J Colloid Interface Sci 2021;605:727-40. [PMID: 34365309 DOI: 10.1016/j.jcis.2021.07.137] [Cited by in Crossref: 116] [Cited by in F6Publishing: 119] [Article Influence: 58.0] [Reference Citation Analysis]
161 Xi X, Dang Q, Wang G, Chen W, Tang L. ZIF-67-derived flower-like ZnIn 2 S 4 @CoS 2 heterostructures for photocatalytic hydrogen production. New J Chem 2021;45:20289-95. [DOI: 10.1039/d1nj03625d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]