BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wei X, Wang X, Pu Y, Liu A, Chen C, Zou W, Zheng Y, Huang J, Zhang Y, Yang Y, Naushad M, Gao B, Dong L. Facile ball-milling synthesis of CeO2/g-C3N4 Z-scheme heterojunction for synergistic adsorption and photodegradation of methylene blue: Characteristics, kinetics, models, and mechanisms. Chemical Engineering Journal 2021;420:127719. [DOI: 10.1016/j.cej.2020.127719] [Cited by in Crossref: 65] [Cited by in F6Publishing: 80] [Article Influence: 32.5] [Reference Citation Analysis]
Number Citing Articles
1 Chu Z, Li J, Sohn HY, Chen C, Huang X, Lan Y, Murali A, Zhang J. CeO2-g-C3N4 S-scheme heterojunctions for enhanced photocatalytic performance: Effects of surface C/N ratio on photocatalytic and adsorption properties. Composites Part B: Engineering 2023;257:110689. [DOI: 10.1016/j.compositesb.2023.110689] [Reference Citation Analysis]
2 Osman AI, Elgarahy AM, Eltaweil AS, Abd El-monaem EM, El-aqapa HG, Park Y, Hwang Y, Ayati A, Farghali M, Ihara I, Al-muhtaseb AH, Rooney DW, Yap P, Sillanpää M. Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis. Environ Chem Lett 2023. [DOI: 10.1007/s10311-023-01581-7] [Reference Citation Analysis]
3 Khan AAP, Raizada P, Singh P, Khan A, Ansari MO, Alotaibi MM. A Z-scheme photocatalysis for phenol eradication from water using peroxymonosulfate activation Ag/AgBr/SCN nanocomposite. Journal of the Taiwan Institute of Chemical Engineers 2023;144:104722. [DOI: 10.1016/j.jtice.2023.104722] [Reference Citation Analysis]
4 Chen M, Cai X, Yang Q, Lu W, Huang Z, Gan T, Hu H, Zhang Y. Construction of a N−Mo−O bond bridged MoO2/Mo-doped g-C3N4 Schottky heterojunction composite with enhanced interfacial compatibility for efficient photocatalytic degradation of tetracycline. Separation and Purification Technology 2023. [DOI: 10.1016/j.seppur.2023.123546] [Reference Citation Analysis]
5 Zhang T, Cai X, Lin X, Jiang Z, Jin H, Huang Z, Gan T, Hu H, Zhang Y. Mechanical activation-enhanced doping and defect strategy to construct Fe–S co-doped carbon nitride for efficient photocatalytic tetracycline degradation and hydrogen evolution. Separation and Purification Technology 2023. [DOI: 10.1016/j.seppur.2023.123618] [Reference Citation Analysis]
6 Han H, Wang X, Qiao Y, Lai Y, Liu B, Zhang Y, Luo J, Toan S, Wang L. Construction of S-scheme heterojunction for enhanced photocatalytic conversation of NO over dual-defect CeO2−x/g-C3N4−x. Journal of Alloys and Compounds 2023;933:167819. [DOI: 10.1016/j.jallcom.2022.167819] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Saruchi, Kumar V, Bhatt D, El-Serehy HA, Pandey S. Gum katira-silver nanoparticle-based bionanocomposite for the removal of methyl red dye. Front Chem 2022;10:959104. [PMID: 36688053 DOI: 10.3389/fchem.2022.959104] [Reference Citation Analysis]
8 Gao Q, Li J, Liu B, Liu C. In-situ synthesis of direct Z-scheme 2D/2D ZnIn2S4@CeO2 heterostructure toward enhanced photodegradation and Cr(VI) reduction. Journal of Alloys and Compounds 2023;931:167430. [DOI: 10.1016/j.jallcom.2022.167430] [Reference Citation Analysis]
9 Zhou X, Wu J, Xiao Y, Jiang Y, Zhang W, Liu Y, Liu Z, Zhang J. Boosting photoelectron transport in Zn0.5Cd0.5S/Sn3O4 heterostructure through close interface contact for enhancing photocatalytic H2 generation and degradation of tetracycline hydrochloride. Separation and Purification Technology 2023. [DOI: 10.1016/j.seppur.2023.123243] [Reference Citation Analysis]
10 Azfar Shaida M, Verma S, Talukdar S, Kumar N, Salim Mahtab M, Naushad M, Haq Farooqi I. Critical analysis of the role of various iron-based heterogeneous catalysts for advanced oxidation processes: A state of the art review. Journal of Molecular Liquids 2023. [DOI: 10.1016/j.molliq.2023.121259] [Reference Citation Analysis]
11 Vavilapalli DS, Peri RG, B M, Sridharan K, Rao MR, Singh S. Enhanced photocatalytic and photoelectrochemical performance of KBiFe2O5/g-C3N4 heterojunction photocatalyst under visible light. Physica B: Condensed Matter 2023;648:414411. [DOI: 10.1016/j.physb.2022.414411] [Reference Citation Analysis]
12 Kumar N, Jung U, Jung B, Park J, Naushad M. Zinc hydroxystannate/zinc-tin oxide heterojunctions for the UVC-assisted photocatalytic degradation of methyl orange and tetracycline. Environ Pollut 2023;316:120353. [PMID: 36240965 DOI: 10.1016/j.envpol.2022.120353] [Reference Citation Analysis]
13 Xu F, Pan Z, Weng B. Sulfur-Induced Vacancies in Ba(2)Bi(1.4)Nb(0.6)O(6) Promoting Photocatalytic Tetracycline Hydrochloride Degradation. Inorg Chem 2022;61:20878-85. [PMID: 36516860 DOI: 10.1021/acs.inorgchem.2c03274] [Reference Citation Analysis]
14 Kishore A, Sunil S M, Viswanathan R, Kaliaperumal A, Jaffar Ali BM. Different Synthetic Routes and Band Gap Engineering of Photocatalysts. Photocatalysts and Electrocatalysts in Water Remediation 2022. [DOI: 10.1002/9781119855347.ch2] [Reference Citation Analysis]
15 Chang F, Shi Z, Lei Y, Zhao Z, Qi Y, Yin P, Chen S. The Strengthened Photocatalytic NO(x) Removal of Composites Bi(4)O(5)Br(2)/BiPO(4): The Efficient Regulation of Interface Carriers by Integrating a Wide-Bandgap Ornament. Molecules 2022;27. [PMID: 36500559 DOI: 10.3390/molecules27238474] [Reference Citation Analysis]
16 Gao Q, Wang Z, Li J, Liu B, Liu C. Facile synthesis of ternary dual Z−scheme g−C3N4/Bi2MoO6/CeO2 photocatalyst with enhanced 4–chlorophenol removal: Degradation pathways and mechanism. Environmental Pollution 2022;315:120436. [DOI: 10.1016/j.envpol.2022.120436] [Reference Citation Analysis]
17 Zhang W, Huang Z, Shen H, Gu Z, Xia S, Zhang P, Han W, Li Y, Tang H. Persulfate activation boosted highly efficient photodegradation of norfloxacin catalyzed by Pt selectively loading LaOCl (001). Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;655:130223. [DOI: 10.1016/j.colsurfa.2022.130223] [Reference Citation Analysis]
18 Qing Y, Li Y, Guo Z, Yang Y, Li W. Photocatalytic Bi2WO6/pg-C3N4-embedded in polyamide microfiltration membrane with enhanced performance in synergistic adsorption-photocatalysis of 17β-estradiol from water. Journal of Environmental Chemical Engineering 2022;10:108648. [DOI: 10.1016/j.jece.2022.108648] [Reference Citation Analysis]
19 He H, Gao X, Xu K, Li H, Hu Y, Yang C, Fu F. 1D/0D Z-scheme heterostructure of Bi2S3/CdXZn1−XS with strong interfacial electric field coupling enhanced mass transfer based on gas-liquid-solid micro interface contact for efficient photothermal synergistic catalytic CO2 reduction to syngas. Chemical Engineering Journal 2022;450:138266. [DOI: 10.1016/j.cej.2022.138266] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Zhou J, Zhu B. Novel 1D/3D CeO2/g-C3N4 catalysts for photodegradation of ciprofloxacin under visible light via dimensional regulation and heterostructure construction. Journal of Physics and Chemistry of Solids 2022;171:111002. [DOI: 10.1016/j.jpcs.2022.111002] [Reference Citation Analysis]
21 Luo Y, Zheng A, Li J, Han Y, Xue M, Zhang L, Yin Z, Xie C, Chen Z, Ji L, Hong Z, Xie X. Integrated adsorption and photodegradation of tetracycline by bismuth oxycarbonate/biochar nanocomposites. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.141228] [Reference Citation Analysis]
22 Rownok MH, Sabrin M, Sultana M, Md A, Soumma SB, Saha ZR, Rahman MS, Nur AS. Fabrication of charcoal-nickel (II)-poly(acrylic acid) nanocomposite hydrogels for photodegradation of rhodamine B under direct sunlight irradiation. Results in Engineering 2022;16:100695. [DOI: 10.1016/j.rineng.2022.100695] [Reference Citation Analysis]
23 Luo Y, Han Y, Hua Y, Xue M, Yu S, Zhang L, Yin Z, Li X, Ma X, Wu H, Liu T, Shen Y, Gao B. Step scheme nickel-aluminium layered double hydroxides/biochar heterostructure photocatalyst for synergistic adsorption and photodegradation of tetracycline. Chemosphere 2022;309:136802. [DOI: 10.1016/j.chemosphere.2022.136802] [Reference Citation Analysis]
24 Wang J, Hu Z, Sun X, Gao Y, Wang J, Xu J, Jin G. Highly dispersed CdS on C3N4 for selective cleavage of Cβ-O-4 bonds in lignin model compound under blue light. Surfaces and Interfaces 2022. [DOI: 10.1016/j.surfin.2022.102505] [Reference Citation Analysis]
25 Cai X, Wang Y, Tang S, Mo L, Leng Z, Zang Y, Jing F, Zang S. Rhombohedral/Cubic In(2)O(3) Phase Junction Hybridized with Polymeric Carbon Nitride for Photodegradation of Organic Pollutants. Int J Mol Sci 2022;23. [PMID: 36430772 DOI: 10.3390/ijms232214293] [Reference Citation Analysis]
26 Matveev AT, Varlamova LA, Konopatsky AS, Leybo DV, Volkov IN, Sorokin PB, Fang X, Shtansky DV. A New Insight into the Mechanisms Underlying the Discoloration, Sorption, and Photodegradation of Methylene Blue Solutions with and without BNO(x) Nanocatalysts. Materials (Basel) 2022;15. [PMID: 36431653 DOI: 10.3390/ma15228169] [Reference Citation Analysis]
27 Zhang L, Chen L, Xia Y, Liang Z, Huang R, Liang R, Yan G. Modification of Polymeric Carbon Nitride with Au–CeO2 Hybrids to Improve Photocatalytic Activity for Hydrogen Evolution. Molecules 2022;27:7489. [DOI: 10.3390/molecules27217489] [Reference Citation Analysis]
28 Kaur R, Kumar H, Singla M, Kumar V, Ghfar AA, Pandey S. Synthesis and mixed micellization characteristics of pyrrolidinium SAILs in association with Sarcosine. Materials Chemistry and Physics 2022;291:126585. [DOI: 10.1016/j.matchemphys.2022.126585] [Reference Citation Analysis]
29 Zeng Y, Zhan X, Li H, Xiong X, Hong B, Xia Y, Ding Y, Wang X. Bottom-to-Up Synthesis of Functional Carbon Nitride Polymer: Design Principles, Controlled Synthesis and Applications. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111734] [Reference Citation Analysis]
30 Khushbu, Jindal R. Sodium Alginate and Chitosan Based Amphoteric Nanocomposites Modified with Graphene Oxide and Bentonite as an Efficient Adsorbent for Both Anionic and Cationic Dyes. J Polym Environ 2022. [DOI: 10.1007/s10924-022-02626-8] [Reference Citation Analysis]
31 Chen K, Sun X, Liu Y, Yang Y, Shi M, Yu J, Zhang S, Shi P. CeO2-Decorated Metal-Organic Framework for Enhanced Photodynamic Therapy. Inorg Chem 2022. [PMID: 36196889 DOI: 10.1021/acs.inorgchem.2c02227] [Reference Citation Analysis]
32 Li J, Wei X, Sun XX, Li R, Wu C, Liao J, Zheng T, Wu J. A Novel Strategy for Excellent Piezocatalytic Activity in Lead-Free BaTiO3-Based Materials via Manipulating the Multiphase Coexistence. ACS Appl Mater Interfaces 2022. [PMID: 36198138 DOI: 10.1021/acsami.2c14322] [Reference Citation Analysis]
33 Vahabirad S, Nezamzadeh-ejhieh A, Mirmohammadi M. The coupled BiOI/(BiO)2CO3 catalyst: Brief characterization, and study of its photocatalytic kinetics. Journal of Solid State Chemistry 2022;314:123405. [DOI: 10.1016/j.jssc.2022.123405] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Luo Y, Zheng A, Xue M, Xie Y, Yu S, Yin Z, Xie C, Hong Z, Tan W, Zou W, Dong L, Gao B. Ball-milled Bi2MoO6/biochar composites for synergistic adsorption and photodegradation of methylene blue: Kinetics and mechanisms. Industrial Crops and Products 2022;186:115229. [DOI: 10.1016/j.indcrop.2022.115229] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
35 Mehrkhah R, Mohammadi M, Zenhari A, Baghayeri M, Roknabadi MR. Antibacterial Evaporator Based on Wood-Reduced Graphene Oxide/Titanium Oxide Nanocomposite for Long-Term and Highly Efficient Solar-Driven Wastewater Treatment. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02528] [Reference Citation Analysis]
36 Karthick Raja Namasivayam S, Pattukumar V, Samrat K, Kumar JA, Arvind Bharani RS, Alothman AA, Osman SM, Tran VA, Rajasimman M. Evaluation of methyl orange adsorption potential of green synthesized chitosan-silver nanocomposite (CS-AgNC) and its notable biocompatibility on freshwater Tilapia (Oreochromis nitoticus). Chemosphere 2022;308:135950. [PMID: 36075361 DOI: 10.1016/j.chemosphere.2022.135950] [Reference Citation Analysis]
37 Yu P, Li N, Zou W, Wei X, Ji J, Han L, Cai Y, Tan W, Gao B, Dong L. K+ and CeO2 nanoparticles modified OMS-2 nanorods for enhanced activity and stability of photocatalytic toluene oxidation: K+ charge modulation and mechanistic investigation. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.138943] [Reference Citation Analysis]
38 Yılmaz M, Eldeeb TM, Hassaan MA, El-nemr MA, Ragab S, El Nemr A. The Use of Mandarin-Biochar-O3-TETA (MBT) Produced from Mandarin Peels as a Natural Adsorbent for the Removal of Acid Red 35 (AR35) Dye from Water. Environ Process 2022;9:44. [DOI: 10.1007/s40710-022-00592-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Gnanasekaran L, Priya AK, Ghfar AA, Sekar K, Santhamoorthy M, Arthi M, Soto-Moscoso M. The influence of heterostructured TiO2/ZnO nanomaterials for the removal of azo dye pollutant. Chemosphere 2022;:136161. [PMID: 36029864 DOI: 10.1016/j.chemosphere.2022.136161] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Ulfa M, Al Afif H, Saraswati TE, Bahruji H. Fast Removal of Methylene Blue via Adsorption-Photodegradation on TiO2/SBA-15 Synthesized by Slow Calcination. Materials 2022;15:5471. [DOI: 10.3390/ma15165471] [Reference Citation Analysis]
41 Rezania S, Kadi A, Kamyab H, Ghfar AA, Rashidi Nodeh H, Wan Ibrahim WN. Lanthanum doped magnetic polyaniline for removal of phosphate ions from water. Chemosphere 2022;307:135809. [PMID: 35934100 DOI: 10.1016/j.chemosphere.2022.135809] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
42 Bahadoran A, Ramakrishna S, Masudy-panah S, De Lile JR, Gu J, Liu Q, Mishra YK. Rational Construction of a 0D/1D S-Scheme CeO2/CdWO4 Heterojunction for Photocatalytic CO2 Reduction and H2 Production. Ind Eng Chem Res 2022;61:10931-10944. [DOI: 10.1021/acs.iecr.2c01224] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Sharma G, Kumar A, Kumar PS, Alodhayb A, Alothman ZA, Dhiman P, Stadler FJ. Carbon quantum dots embedded trimetallic oxide: Characterization and photocatalytic degradation of Ofloxacin. Journal of Water Process Engineering 2022;48:102853. [DOI: 10.1016/j.jwpe.2022.102853] [Reference Citation Analysis]
44 Kumar A, Sharma K, Thakur M, Pathania D, Sharma A. Fabrication of high visible light active LaFeO3/Cl-g-C3N4/RGO heterojunction for solar assisted photo-degradation of aceclofenac. Journal of Environmental Chemical Engineering 2022;10:108098. [DOI: 10.1016/j.jece.2022.108098] [Reference Citation Analysis]
45 Mukhtar F, Munawar T, Nadeem MS, Khan SA, Koc M, Batool S, Hasan M, Iqbal F. Enhanced sunlight-absorption of Fe2O3 covered by PANI for the photodegradation of organic pollutants and antimicrobial inactivation. Advanced Powder Technology 2022;33:103708. [DOI: 10.1016/j.apt.2022.103708] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
46 Rasheed T. Magnetic nanomaterials: Greener and sustainable alternatives for the adsorption of hazardous environmental contaminants. Journal of Cleaner Production 2022;362:132338. [DOI: 10.1016/j.jclepro.2022.132338] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Du F, Yang D, Kang T, Ren Y, Hu P, Song J, Teng F, Fan H. SiO2/Ga2O3 nanocomposite for highly efficient selective removal of cationic organic pollutant via synergistic electrostatic adsorption and photocatalysis. Separation and Purification Technology 2022;295:121221. [DOI: 10.1016/j.seppur.2022.121221] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Vani OV, Palve AM. Layered Molybdenum (Meta)phosphate for Photoreduction of Hexavalent Chromium and Degradation of Methylene Blue under Sunlight Radiance. ACS Omega. [DOI: 10.1021/acsomega.2c02824] [Reference Citation Analysis]
49 Gnanasekaran L, Priya AK, Vasseghian Y, Ansar S, Soto-Moscoso M. Existence of Ti3+ and dislocation on nanoporous CdO-TiO2 heterostructure applicable for degrading chlorophenol pollutant. Environ Res 2022;214:113889. [PMID: 35843276 DOI: 10.1016/j.envres.2022.113889] [Reference Citation Analysis]
50 Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Jawahar MJ, Neshaanthini JP, Saravanan R. A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives. Chemosphere 2022;307:135713. [PMID: 35843436 DOI: 10.1016/j.chemosphere.2022.135713] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Zhao Q, Liu S, Chen S, Ren B, Zhang Y, Luo X, Sun Y. Facile ball-milling synthesis of WO3/g-C3N4 heterojunction for photocatalytic degradation of Rhodamine B. Chemical Physics Letters 2022. [DOI: 10.1016/j.cplett.2022.139908] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Zeng Y, Lu D, Kondamareddy KK, Wang H, Wu Q, Fan H, Wang Q, Zhang B, Xie L, Zhang Y, Wang Z, Zhao B, Ho W. Enhanced visible light photocatalysis and mechanism insight for novel Z-scheme MoS2/Ag2S/AgVOx ternary heterostructure with fast interfacial charges transfer. Journal of Alloys and Compounds 2022;908:164642. [DOI: 10.1016/j.jallcom.2022.164642] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
53 Jiang H, Qu Y, Zhang X, Gao R, Cheng X, Gao S, Huo L, Major Z, Xu Y. Light-enhanced NO2 sensing performance and sensing mechanism of flower-like Cl uniformly doped In2O3. Applied Surface Science 2022;590:153033. [DOI: 10.1016/j.apsusc.2022.153033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Wei X, Li K, Zhang X, Tong Q, Ji J, Cai Y, Gao B, Zou W, Dong L. CeO2 nanosheets with anion-induced oxygen vacancies for promoting photocatalytic toluene mineralization: toluene adsorption and reactive oxygen species. Applied Catalysis B: Environmental 2022. [DOI: 10.1016/j.apcatb.2022.121694] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
55 Ulfa M, Setiarini I. The Effect of Zinc Oxide Supported on Gelatin Mesoporous Silica (GSBA-15) on Structural Character and Their Methylene Blue Photodegradation Performance. Bull Chem React Eng Catal 2022;17:363-74. [DOI: 10.9767/bcrec.17.2.13712.363-374] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Yin Z, Zhang Q, Li S, Cagnetta G, Huang J, Deng S, Yu G. Mechanochemical synthesis of catalysts and reagents for water decontamination: Recent advances and perspective. Sci Total Environ 2022;825:153992. [PMID: 35192815 DOI: 10.1016/j.scitotenv.2022.153992] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
57 Nath MP, Biswas S, Nath P, Choudhury B. Synergy of Adsorption and Plasmonic Photocatalysis in the Au-CeO2 Nanosystem: Experimental Validation and Plasmonic Modeling. Langmuir 2022. [PMID: 35666639 DOI: 10.1021/acs.langmuir.2c01056] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
58 Zhao L, Wang S, Wang J, Yu H, Zhao C, Meng L. Cage-shaped [P(W3O10)4]3- nanoclusters deposited carbon nitride to construct a dual-functional catalyst for photocatalytic mineralization wastewater and dye detector. Journal of Environmental Chemical Engineering 2022;10:107627. [DOI: 10.1016/j.jece.2022.107627] [Reference Citation Analysis]
59 Li J, Huang L, Yang Z, Liu Z, Sun X. Construction of Cu2O/Cu heterojunction with hierarchical hollow sphere structure as visible-light driven photocatalyst for efficient water remediation. Journal of Environmental Chemical Engineering 2022;10:108020. [DOI: 10.1016/j.jece.2022.108020] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
60 Adeola AO, Abiodun BA, Adenuga DO, Nomngongo PN. Adsorptive and photocatalytic remediation of hazardous organic chemical pollutants in aqueous medium: A review. Journal of Contaminant Hydrology 2022;248:104019. [DOI: 10.1016/j.jconhyd.2022.104019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
61 Pourebrahimi S, Pirooz M. Functionalized covalent triazine frameworks as promising platforms for environmental remediation: A review. Cleaner Chemical Engineering 2022;2:100012. [DOI: 10.1016/j.clce.2022.100012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
62 Yu X, Song Z, Dong X, Li H, Liu H, Zhao B, Ye T, Jiang Y, Li X, Duan L, Fan J, Zhao P. Enhanced photocatalytic activity of rare earth (Yb, Nd and Ce)-doped g-C3N4 nanosheets for the degradation of organic dyes under visible light. J Mater Sci: Mater Electron. [DOI: 10.1007/s10854-022-08267-w] [Reference Citation Analysis]
63 Qu J, Teng D, Zhang X, Yang Q, Li P, Cao Y. Preparation and regulation of two-dimensional Ti3C2Tx MXene for enhanced adsorption–photocatalytic degradation of organic dyes in wastewater. Ceramics International 2022;48:14451-9. [DOI: 10.1016/j.ceramint.2022.01.338] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
64 Belousov AS, Fukina DG, Koryagin AV. Metal–organic framework‐based heterojunction photocatalysts for organic pollutant degradation: design, construction, and performances. J of Chemical Tech & Biotech. [DOI: 10.1002/jctb.7091] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
65 Cheng R, Xia J, Wen J, Xu P, Zheng X. Nano Metal-Containing Photocatalysts for the Removal of Volatile Organic Compounds: Doping, Performance, and Mechanisms. Nanomaterials 2022;12:1335. [DOI: 10.3390/nano12081335] [Reference Citation Analysis]
66 Sharma PK, Pandey OP. Photocatalytic studies of Zn-doped and (Y, Zn)-co-doped CeO2/CdS heterostructures for the removal of crystal violet dye. J Mater Sci: Mater Electron. [DOI: 10.1007/s10854-022-08103-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Wu Q, Lu D, Kondamareddy KK, Ho W, Wang Q, Zhang Y, Zeng Y, Zhang B, Xie L, Zhao B, Wang Z, Hao H, Fan H, Wang H. In-situ synthesis of ternary heterojunctions via g-C3N4 coupling with noble-metal-free NiS and CdS with efficient visible-light-induced photocatalytic H2 evolution and mechanism insight. International Journal of Hydrogen Energy 2022;47:14063-76. [DOI: 10.1016/j.ijhydene.2022.02.153] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
68 Li G, Cai Y, Wang X, Zhang L, Xie Q, Chen P, Li C, Sun J, Li T, Dong L. Direct Z-scheme heterojunction rutile-TiO2/g-C3N4 catalyst constructed by solid grinding method for photocatalysis degradation. Chemical Physics 2022. [DOI: 10.1016/j.chemphys.2022.111558] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
69 Luo Y, Han Y, Xue M, Xie Y, Yin Z, Xie C, Li X, Zheng Y, Huang J, Zhang Y, Yang Y, Gao B. Ball-milled bismuth oxybromide/biochar composites with enhanced removal of reactive red owing to the synergy between adsorption and photodegradation. Journal of Environmental Management 2022;308:114652. [DOI: 10.1016/j.jenvman.2022.114652] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
70 Rangarajan G, Jayaseelan A, Farnood R. Photocatalytic reactive oxygen species generation and their mechanisms of action in pollutant removal with biochar supported photocatalysts: A review. Journal of Cleaner Production 2022;346:131155. [DOI: 10.1016/j.jclepro.2022.131155] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Fauzi AA, Jalil AA, Hassan NS, Aziz FFA, Azami MS, Abdullah TAT, Kamaroddin MFA, Setiabudi HD. An intriguing Z-scheme titania loaded on fibrous silica ceria for accelerated visible-light-driven photocatalytic degradation of ciprofloxacin. Environ Res 2022;211:113069. [PMID: 35300961 DOI: 10.1016/j.envres.2022.113069] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
72 Gnanasekaran L, Rajendran S, Karimi-maleh H, Priya A, Qin J, Soto-moscoso M, Ansar S, Bathula C. Surface modification of TiO2 by adding V2O5 nanocatalytic system for hydrogen generation. Chemical Engineering Research and Design 2022. [DOI: 10.1016/j.cherd.2022.03.046] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
73 Munawar T, Mukhtar F, Nadeem MS, Manzoor S, Ashiq MN, Mahmood K, Batool S, Hasan M, Iqbal F. Fabrication of dual Z-scheme TiO2-WO3-CeO2 heterostructured nanocomposite with enhanced photocatalysis, antibacterial, and electrochemical performance. Journal of Alloys and Compounds 2022;898:162779. [DOI: 10.1016/j.jallcom.2021.162779] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 17.0] [Reference Citation Analysis]
74 Ji S, Dong J, Ji M, Zou W, Yin S, Chen Z, Xia J. Rapid dual-channel electrons transfer via synergistic effect of LSPR effect and build-in electric field in Z-scheme W18O49/BiOBr heterojunction for organic pollutants degradation. Inorganic Chemistry Communications 2022. [DOI: 10.1016/j.inoche.2022.109283] [Reference Citation Analysis]
75 Iqbal S, Bahadur A, Javed M, Liu G, Al-muhimeed TI, Alobaid AA, Ahmad Z, Feng K, Xiao D. Synergetic intimate interface contacts of 2D/1D S-g-C3N4/Co-NiS heterojunction with spatial charge separation for boosting photodegradation of MB and inactivation of pathogens under visible light irradiation. Journal of Alloys and Compounds 2022;892:162012. [DOI: 10.1016/j.jallcom.2021.162012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
76 Alaghmandfard A, Ghandi K. A Comprehensive Review of Graphitic Carbon Nitride (g-C3N4)–Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing. Nanomaterials 2022;12:294. [DOI: 10.3390/nano12020294] [Cited by in Crossref: 19] [Cited by in F6Publishing: 25] [Article Influence: 19.0] [Reference Citation Analysis]
77 Khan I, Saeed K, Zekker I, Zhang B, Hendi AH, Ahmad A, Ahmad S, Zada N, Ahmad H, Shah LA, Shah T, Khan I. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022;14:242. [DOI: 10.3390/w14020242] [Cited by in Crossref: 82] [Cited by in F6Publishing: 73] [Article Influence: 82.0] [Reference Citation Analysis]
78 Li C, Guo R, Wu T, Pan W. Progress and perspectives on 1D nanostructured catalysts applied in photo(electro)catalytic reduction of CO2. Nanoscale 2022;14:16033-16064. [DOI: 10.1039/d2nr04063h] [Reference Citation Analysis]
79 Tian X, Wu H, Hu X, Wang Z, Ren C, Cheng Z, Dou L, Lin Y. Enhanced photocatalytic performance of ZnO/AgCl composites prepared by high-energy mechanical ball milling. New J Chem 2022;46:9155-71. [DOI: 10.1039/d2nj00798c] [Reference Citation Analysis]
80 Abubshait HA, Iqbal S, Abubshait SA, Alotaibi MT, Alwadai N, Alfryyan N, Alsaab HO, Awwad NS, Ibrahium HA. A well-defined S-g-C 3 N 4 /Cu–NiS heterojunction interface towards enhanced spatial charge separation with excellent photocatalytic ability: synergetic effect, kinetics, antibacterial activity, and mechanism insights. RSC Adv 2022;12:3274-86. [DOI: 10.1039/d1ra07974c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Zhang S, Dang H, Rong F, Huang S, Wang M, Hu L, Zhang Z. Multiple cobalt active sites evenly embedded in mesoporous carbon nanospheres derived from a polymer-metal-organic framework: efficient removal and photodegradation of malachite green. RSC Adv 2022;12:32307-32317. [DOI: 10.1039/d2ra04906f] [Reference Citation Analysis]
82 Wu Q, Lu D, Zhang B, Kondamareddy KK, Zeng Y, Zhang Y, Wang J, Zhou M, D N, Hao H, Fan H. Interfacial optimization of CeO2 nanoparticles loaded two-dimensional graphite carbon nitride toward synergistic enhancement of visible-light-driven photoelectric and photocatalytic hydrogen evolution. International Journal of Hydrogen Energy 2022;47:2313-26. [DOI: 10.1016/j.ijhydene.2021.10.221] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
83 Li J, Zhang Q, Zhang L, Zhang J, Liu Y, Zhang N, Fang Y. Interfacial band bending induced charge-transfer regulation over Ag@ZIF-8@g-C 3 N 4 to boost photocatalytic CO 2 reduction into syngas. Catal Sci Technol 2022;12:3343-55. [DOI: 10.1039/d2cy00403h] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
84 Gu X, Chen T, Lei J, Yang Y, Zheng X, Zhang S, Zhu Q, Fu X, Meng S, Chen S. Self-assembly synthesis of S-scheme g-C3N4/Bi8(CrO4)O11 for photocatalytic degradation of norfloxacin and bisphenol A. Chinese Journal of Catalysis 2022;43:2569-2580. [DOI: 10.1016/s1872-2067(22)64142-1] [Reference Citation Analysis]
85 Lai C, Yan H, Wang D, Liu S, Zhou X, Li X, Zhang M, Li L, Fu Y, Xu F, Yang X, Huo X. Facile synthesis of Mn, Ce co-doped g-C3N4 composite for peroxymonosulfate activation towards organic contaminant degradation. Chemosphere 2021;293:133472. [PMID: 34974046 DOI: 10.1016/j.chemosphere.2021.133472] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
86 Abubshait SA, Iqbal S, Abubshait HA, Alobaid AA, Al-muhimeed TI, Abd-rabboh HS, Bahadur A, Li W. Effective heterointerface combination of 1D/2D Co-NiS/S-g-C3N4 heterojunction for boosting spatial charge separation with enhanced photocatalytic degradation of organic pollutants and disinfection of pathogens. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;628:127390. [DOI: 10.1016/j.colsurfa.2021.127390] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
87 Alenazi DAK, Aslam M, Chandrasekaran S, Soomro MT, Ali S, Danish EY, Ismail I, Hameed A. Facile fabrication of MoO3/g-C3N4 p-n junction for boosted photocatalytic elimination of 2,4-D under natural sunlight exposure. Journal of Environmental Chemical Engineering 2021;9:106304. [DOI: 10.1016/j.jece.2021.106304] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
88 Kim H, Min K, Lim C, Shim SE, Lim D, Baeck S. Interface engineering of Cu3P/FeP heterostructure as an enhanced electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy 2021;46:32364-72. [DOI: 10.1016/j.ijhydene.2021.07.088] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
89 Zhang S, Guo J, Zhang W, Gao H, Huang J, Chen G, Xu X. Dopant and Defect Doubly Modified CeO 2 /g-C 3 N 4 Nanosheets as 0D/2D Z-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution: Experimental and Density Functional Theory Studies. ACS Sustainable Chem Eng 2021;9:11479-92. [DOI: 10.1021/acssuschemeng.1c03683] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
90 Parvathi LT, Arunpandian M, Arunachalam S, Karuthapandian S. Visible-light-driven Pd doped β-Bi2O3 nanocomposite: an affordable and an efficient catalyst for mitigation of noxious pollutant. Appl Phys A 2021;127. [DOI: 10.1007/s00339-021-04679-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
91 Yu F, Tian F, Zou H, Ye Z, Peng C, Huang J, Zheng Y, Zhang Y, Yang Y, Wei X, Gao B. ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue. J Hazard Mater 2021;415:125511. [PMID: 33740715 DOI: 10.1016/j.jhazmat.2021.125511] [Cited by in Crossref: 48] [Cited by in F6Publishing: 56] [Article Influence: 24.0] [Reference Citation Analysis]