BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao Y, Yuan X, Jiang L, Li X, Zhang J, Wang H. Reutilization of cathode material from spent batteries as a heterogeneous catalyst to remove antibiotics in wastewater via peroxymonosulfate activation. Chemical Engineering Journal 2020;400:125903. [DOI: 10.1016/j.cej.2020.125903] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Bai Y, Sun X, Dang Y, Yu S, Zhu JJ, Zhou Y. A self-circulating electro-fenton-like process over Fe(3)O(4)-CaO(2) cathode for highly efficient degradation of levofloxacin. Chemosphere 2023;313:137520. [PMID: 36528160 DOI: 10.1016/j.chemosphere.2022.137520] [Reference Citation Analysis]
2 Wang P, Guo Y, Guan J, Wang Z. Applications of Spent Lithium Battery Electrode Materials in Catalytic Decontamination: A Review. Catalysts 2023;13:189. [DOI: 10.3390/catal13010189] [Reference Citation Analysis]
3 Meng Z, Mo R, Wang Q, Zheng K, Li W, Qin C. Nitrogen-doped porous carbon derived from graphite of solid waste for activating peroxymonosulfate to degradation tetracycline. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023. [DOI: 10.1016/j.colsurfa.2023.130984] [Reference Citation Analysis]
4 Mo Y, Zhang X. Insights into the mechanism of multiple Cu-doped CoFe2O4 nanocatalyst activated peroxymonosulfate for efficient degradation of Rhodamine B. Journal of Environmental Sciences 2022. [DOI: 10.1016/j.jes.2022.12.003] [Reference Citation Analysis]
5 Xiao F, Wang Y, Xie X, Dong X, Kan Y, Zhang Y, Zhang Y, Zhou G, Li B, Cao X, Zhang J, Chen M, Li L, Lyu X. Preparation of Fe/C-Mt composite catalyst and ofloxacin removal by peroxymonosulfate activation. Separation and Purification Technology 2022;298:121548. [DOI: 10.1016/j.seppur.2022.121548] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Ji J, Zhao Y, Wang H, Jiang L, Yuan X, Wang H. Resource utilization of chicken manure to produce biochar for effective removal of levofloxacin hydrochloride through peroxymonosulfate activation: The synergetic function of graphitization and nitrogen functionality. Chemosphere 2022;:136419. [PMID: 36152824 DOI: 10.1016/j.chemosphere.2022.136419] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Zhang T, Hu C, Li Q, Chen C, Hu J, Xiao X, Li M, Zou X, Huang L. Hydrogen Peroxide Activated by Biochar-Supported Sulfidated Nano Zerovalent Iron for Removal of Sulfamethazine: Response Surface Method Approach. IJERPH 2022;19:9923. [DOI: 10.3390/ijerph19169923] [Reference Citation Analysis]
8 Wang Y, Li K, Shang M, Zhang Y, Zhang Y, Li B, Kan Y, Cao X, Zhang J. A Novel Partially Carbonized Fe3O4@PANI-p Catalyst for Tetracycline Degradation via Peroxymonosulfate Activation. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.138655] [Reference Citation Analysis]
9 Yusuf A, Giwa A, Eniola JO, Amusa HK, Bilad MR. Recent advances in catalytic sulfate radical-based approach for removal of emerging contaminants. Journal of Hazardous Materials Advances 2022;7:100108. [DOI: 10.1016/j.hazadv.2022.100108] [Reference Citation Analysis]
10 Chen C, Liu L, Li W, Lan Y, Li Y. Reutilization of waste self-heating pad by loading cobalt: A magnetic and green peroxymonosulfate activator for naphthalene degradation. J Hazard Mater 2022;439:129572. [PMID: 35863229 DOI: 10.1016/j.jhazmat.2022.129572] [Reference Citation Analysis]
11 Yu S, Zhang Q, Sun X, Chen S, Tang J, Zhu J, Dang Y. Doping Sb into CuFe2O4 improved the catalytic performance in the electrochemically enhanced homogeneous peroxymonosulfate-heterogeneous catalytic system for the degradation of ciprofloxacin. Journal of Environmental Chemical Engineering 2022;10:108335. [DOI: 10.1016/j.jece.2022.108335] [Reference Citation Analysis]
12 Zhao Y, Wang H, Ji J, Li X, Yuan X, Duan A, Guan X, Jiang L, Li Y. Recycling of waste power lithium-ion batteries to prepare nickel/cobalt/manganese -containing catalysts with inter-valence cobalt/manganese synergistic effect for peroxymonosulfate activation. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.06.112] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Jiang L, Wei Z, Ding Y, Ma Y, Fu X, Sun J, Ma M, Zhu W, Wang J. In-situ synthesis of self-standing cobalt-doped nickel sulfide nanoarray as a recyclable and integrated catalyst for peroxymonosulfate activation. Applied Catalysis B: Environmental 2022;307:121184. [DOI: 10.1016/j.apcatb.2022.121184] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
14 Zhao Y, Wang H, Ji J, Li X, Yuan X, Jiang L, Yang J, Shao Y, Guan X. Degradation of ciprofloxacin by peroxymonosulfate activation using catalyst derived from spent lithium-ion batteries. Journal of Cleaner Production 2022. [DOI: 10.1016/j.jclepro.2022.132442] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Zhao Y, Dai H, Ji J, Yuan X, Li X, Jiang L, Wang H. Resource utilization of luffa sponge to produce biochar for effective degradation of organic contaminants through persulfate activation. Separation and Purification Technology 2022;288:120650. [DOI: 10.1016/j.seppur.2022.120650] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
16 Chen S, Long F, Gao G, Belver C, Li Z, Li Z, Guan J, Guo Y, Bedia J. Zero-valent iron-copper bimetallic catalyst supported on graphite from spent lithium-ion battery anodes and mill scale waste for the degradation of 4-chlorophenol in aqueous phase. Separation and Purification Technology 2022;286:120466. [DOI: 10.1016/j.seppur.2022.120466] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
17 Shen Y. Recycling cathode materials of spent lithium-ion batteries for advanced catalysts production. Journal of Power Sources 2022;528:231220. [DOI: 10.1016/j.jpowsour.2022.231220] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
18 Peng J, He YY, Zhang ZY, Chen XZ, Jiang YL, Guo H, Yuan JP, Wang JH. Removal of levofloxacin by an oleaginous microalgae Chromochloris zofingiensis in the heterotrophic mode of cultivation: Removal performance and mechanism. J Hazard Mater 2022;425:128036. [PMID: 34986572 DOI: 10.1016/j.jhazmat.2021.128036] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
19 Dung NT, Duc NH, Binh VT, Thao VD, Nguyen MB, Ngan LV, Huy NN. A comprehensive study on the treatment of various organic pollutants by NiCoFe layered double oxide: Material synthesis and characterization, decomposition mechanism exploration, and real water applications. Separation and Purification Technology 2022;285:120358. [DOI: 10.1016/j.seppur.2021.120358] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Zhang Q, Sun X, Dang Y, Zhu JJ, Zhao Y, Xu X, Zhou Y. A novel electrochemically enhanced homogeneous PMS-heterogeneous CoFe2O4 synergistic catalysis for the efficient removal of levofloxacin. J Hazard Mater 2022;424:127651. [PMID: 34772555 DOI: 10.1016/j.jhazmat.2021.127651] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
21 Cao X, Xiao F, Lyu Z, Xie X, Zhang Z, Dong X, Wang J, Lyu X, Zhang Y, Liang Y. CuFe2O4 supported on montmorillonite to activate peroxymonosulfate for efficient ofloxacin degradation. Journal of Water Process Engineering 2021;44:102359. [DOI: 10.1016/j.jwpe.2021.102359] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
22 Jena KK, Alfantazi A, Mayyas AT. Comprehensive Review on Concept and Recycling Evolution of Lithium-Ion Batteries (LIBs). Energy Fuels 2021;35:18257-84. [DOI: 10.1021/acs.energyfuels.1c02489] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
23 Huang Z, Qiu R, Lin K, Ruan J, Xu Z. In Situ Recombination of Elements in Spent Lithium-Ion Batteries to Recover High-Value γ-LiAlO2 and LiAl5O8. Environ Sci Technol 2021;55:7643-53. [PMID: 33983726 DOI: 10.1021/acs.est.1c00694] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
24 Zhao Y, Yuan X, Li X, Jiang L, Wang H. Burgeoning prospects of biochar and its composite in persulfate-advanced oxidation process. J Hazard Mater 2021;409:124893. [PMID: 33418291 DOI: 10.1016/j.jhazmat.2020.124893] [Cited by in Crossref: 56] [Cited by in F6Publishing: 41] [Article Influence: 28.0] [Reference Citation Analysis]
25 Yang M, Ren X, Hu L, Guo W, Zhan J. Facet-controlled activation of persulfate by goethite for tetracycline degradation in aqueous solution. Chemical Engineering Journal 2021;412:128628. [DOI: 10.1016/j.cej.2021.128628] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
26 Costa C, Barbosa J, Gonçalves R, Castro H, Campo FD, Lanceros-méndez S. Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energy Storage Materials 2021;37:433-65. [DOI: 10.1016/j.ensm.2021.02.032] [Cited by in Crossref: 57] [Cited by in F6Publishing: 66] [Article Influence: 28.5] [Reference Citation Analysis]
27 Yang T, Ma T, Yang L, Dai W, Zhang S, Luo S. A self-supporting UiO-66 photocatalyst with Pd nanoparticles for efficient degradation of tetracycline. Applied Surface Science 2021;544:148928. [DOI: 10.1016/j.apsusc.2021.148928] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 13.0] [Reference Citation Analysis]
28 Hu L, Ren X, Yang M, Guo W. Facet-controlled activation of persulfate by magnetite nanoparticles for the degradation of tetracycline. Separation and Purification Technology 2021;258:118014. [DOI: 10.1016/j.seppur.2020.118014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
29 Tan C, Jian X, Wu H, Sheng T, Sun K, Gao H. Kinetics degradation of phenacetin by solar activated persulfate system. Separation and Purification Technology 2021;256:117851. [DOI: 10.1016/j.seppur.2020.117851] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
30 Hou J, He X, Zhang S, Yu J, Feng M, Li X. Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: A review. Sci Total Environ 2021;770:145311. [PMID: 33736411 DOI: 10.1016/j.scitotenv.2021.145311] [Cited by in Crossref: 51] [Cited by in F6Publishing: 61] [Article Influence: 25.5] [Reference Citation Analysis]
31 Peng X, Luo W, Wu J, Hu F, Hu Y, Xu L, Xu G, Jian Y, Dai H. Carbon quantum dots decorated heteroatom co-doped core-shell Fe0@POCN for degradation of tetracycline via multiply synergistic mechanisms. Chemosphere 2021;268:128806. [PMID: 33187647 DOI: 10.1016/j.chemosphere.2020.128806] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]