BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gao Y, Zou D. Efficient degradation of levofloxacin by a microwave–3D ZnCo2O4/activated persulfate process: Effects, degradation intermediates, and acute toxicity. Chemical Engineering Journal 2020;393:124795. [DOI: 10.1016/j.cej.2020.124795] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
Number Citing Articles
1 Yu X, Jin X, Liu H, Yu Y, Tang J, Zhou R, Yin A, Sun J, Zhu L. Enhanced degradation of atrazine through UV/bisulfite: Mechanism, reaction pathways and toxicological analysis. Science of The Total Environment 2023;856:159157. [DOI: 10.1016/j.scitotenv.2022.159157] [Reference Citation Analysis]
2 Zhang G, Wang Y, Chen M, Xu J, Wang L. ZIF-67-derived carbon@Co3S4/CoSO4/MnO polyhedron to activate peroxymonosulfate for degrading levofloxacin: Synergistic effect and mechanism. Chemical Engineering Journal 2023;451:138976. [DOI: 10.1016/j.cej.2022.138976] [Reference Citation Analysis]
3 Yan J, Gong L, Chai S, Guo C, Zhang W, Wan H. ZIF-67 loaded lotus leaf-derived biochar for efficient peroxymonosulfate activation for sustained levofloxacin degradation. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141456] [Reference Citation Analysis]
4 Xu Z, Jiang J, Wang M, Wang J, Tang Y, Li S, Liu J. Enhanced levofloxacin degradation by hierarchical porous Co3O4 with rich oxygen vacancies activating peroxymonosulfate: Performance and mechanism. Separation and Purification Technology 2023;304:122055. [DOI: 10.1016/j.seppur.2022.122055] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Fan H, Chen C, Huang Q, Lu J, Hu J, Wang P, Liang J, Hu H, Gan T. Zinc-doped and biochar support strategies to enhance the catalytic activity of CuFe(2)O(4) to persulfate for crystal violet degradation. Environ Sci Pollut Res Int 2022. [PMID: 36585595 DOI: 10.1007/s11356-022-24929-y] [Reference Citation Analysis]
6 Cao M, Lei J, Zhang J, Zhou L, Liu Y. Covalent organic frameworks derived carbon supported cobalt ultra-small particles: C O and Co-Nx complex sites activated peroxymonosulfate synergistically for efficient degradation of levofloxacin. Journal of Cleaner Production 2022;375:134114. [DOI: 10.1016/j.jclepro.2022.134114] [Reference Citation Analysis]
7 Li Y, Liu W, Li L, Jiang S, Cheng X. Catalytic Degradation of Organic Contaminants by Microwave-Assisted Persulfate Activation System: Performance and Mechanism. Catalysts 2022;12:1232. [DOI: 10.3390/catal12101232] [Reference Citation Analysis]
8 Li S, Yang Y, Zheng H, Zheng Y, He CS, Lai B, Ma J, Nan J. Introduction of oxygen vacancy to manganese ferrite by Co substitution for enhanced peracetic acid activation and 1O2 dominated tetracycline hydrochloride degradation under microwave irradiation. Water Res 2022;225:119176. [PMID: 36191527 DOI: 10.1016/j.watres.2022.119176] [Reference Citation Analysis]
9 Ji J, Zhao Y, Wang H, Jiang L, Yuan X, Wang H. Resource utilization of chicken manure to produce biochar for effective removal of levofloxacin hydrochloride through peroxymonosulfate activation: The synergetic function of graphitization and nitrogen functionality. Chemosphere 2022;:136419. [PMID: 36152824 DOI: 10.1016/j.chemosphere.2022.136419] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Jiang F, Feng X, Jiang X, Wang P. Enhanced dewaterability of lake dredged sediments by electrochemical oxidation of peroxydisulfate on BDD anode. Chemosphere 2022;307:135832. [PMID: 35963373 DOI: 10.1016/j.chemosphere.2022.135832] [Reference Citation Analysis]
11 Ye M, Wu J, Fan G. Hierarchical porous cobalt/carbon hybrid anchored Ru-catalyzed ammonia-borane hydrolysis for efficient H2 release. Fuel 2022;321:123982. [DOI: 10.1016/j.fuel.2022.123982] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
12 Nie J, Yu X, Liu Z, Zhang J, Ma Y, Chen Y, Ji Q, Zhao N, Chang Z. Energy band reconstruction mechanism of Cl-doped Cu2O and photocatalytic degradation pathway for levofloxacin. Journal of Cleaner Production 2022;363:132593. [DOI: 10.1016/j.jclepro.2022.132593] [Reference Citation Analysis]
13 Wang B, Wang Y. A comprehensive review on persulfate activation treatment of wastewater. Sci Total Environ 2022;831:154906. [PMID: 35364155 DOI: 10.1016/j.scitotenv.2022.154906] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
14 Bose S, Kumar M. Microwave-assisted persulfate/peroxymonosulfate process for environmental remediation. Current Opinion in Chemical Engineering 2022;36:100826. [DOI: 10.1016/j.coche.2022.100826] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
15 Liu L, Zhan R, Zhang M, Li J, Wang Z, Mi H, Zhang Y. Insights into the performance, mechanism, and ecotoxicity of levofloxacin degradation in CoFe2O4 catalytic peroxymonosulfate process. Journal of Environmental Chemical Engineering 2022;10:107435. [DOI: 10.1016/j.jece.2022.107435] [Reference Citation Analysis]
16 Tang J, Liu X, Liu Y, Zhang X, Lin Y, Chen L, Fang D, Wang J. Novel Z-scheme Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4 photocatalyst for round-the-clock efficient degradation of organic pollutants and hydrogen production. Chemical Engineering Journal 2022;435:134773. [DOI: 10.1016/j.cej.2022.134773] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
17 Han S, Xiao P. Catalytic degradation of tetracycline using peroxymonosulfate activated by cobalt and iron co-loaded pomelo peel biochar nanocomposite: Characterization, performance and reaction mechanism. Separation and Purification Technology 2022;287:120533. [DOI: 10.1016/j.seppur.2022.120533] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
18 Rong F, Xue Y, Tang W, Lu Q, Wei M, Guo E, Pang Y. Visible-light-active 1D Ag-CoWO4/CdWO4 plasmonic photocatalysts boosting levofloxacin conversion. Journal of the Taiwan Institute of Chemical Engineers 2022;133:104267. [DOI: 10.1016/j.jtice.2022.104267] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Song X, Ni J, Liu D, Shi W, Yuan Y, Cui F, Tian J, Wang W. Molybdenum disulfide as excellent Co-catalyst boosting catalytic degradation of sulfamethoxazole by nZVI/PDS process. Separation and Purification Technology 2022;285:120398. [DOI: 10.1016/j.seppur.2021.120398] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
20 Zhang Q, Sun X, Dang Y, Zhu JJ, Zhao Y, Xu X, Zhou Y. A novel electrochemically enhanced homogeneous PMS-heterogeneous CoFe2O4 synergistic catalysis for the efficient removal of levofloxacin. J Hazard Mater 2022;424:127651. [PMID: 34772555 DOI: 10.1016/j.jhazmat.2021.127651] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
21 Wang S, Chen M, Shen S, Cheng C, Cai A, Song A, Lu X, Gao G, Ma M, Zhang Z, Xu X. Bifunctionalized Fe7S8@MoS2–O core-shell with efficient photocatalytic activity based on internal electric field. Journal of Cleaner Production 2022;335:130375. [DOI: 10.1016/j.jclepro.2022.130375] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
22 Li J, Wei J, Xu M, Pan G, Zhang Y, Xing L, Li Y, Li J, Jiang Z. A porous graphitic biochar wrapped Co9S8 core–shell composite enables pH-universal activation of peroxymonosulfate for highly efficient and rapid antibiotics degradation. Environ Sci : Nano 2022;9:3629-3645. [DOI: 10.1039/d2en00418f] [Reference Citation Analysis]
23 Li X, Li K, Du J, Pei M, Song C, Guo X. Nitrogen-rich porous polymeric carbon nitride with enhanced photocatalytic activity for synergistic removal of organic and heavy metal pollutants. Environ Sci : Nano 2022;9:2388-2401. [DOI: 10.1039/d2en00243d] [Reference Citation Analysis]
24 Saya L, Malik V, Gautam D, Gambhir G, Balendra, Singh WR, Hooda S. A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater. Sci Total Environ 2021;:152529. [PMID: 34953830 DOI: 10.1016/j.scitotenv.2021.152529] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
25 Liu Y, Ma Z, Yang G, Wu Z, Li Y, Gu J, Gautam J, Gong X, Chishti AN, Duan S, Chen C, Chen M, Ni L, Diao G. Multifunctional ZnCo 2 O 4 Quantum Dots Encapsulated In Carbon Carrier for Anchoring/Catalyzing Polysulfides and Self‐Repairing Lithium Metal Anode in Lithium‐Sulfur Batteries. Adv Funct Materials 2022;32:2109462. [DOI: 10.1002/adfm.202109462] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
26 Xia H, Li C, Yang G, Shi Z, Jin C, He W, Xu J, Li G. A review of microwave-assisted advanced oxidation processes for wastewater treatment. Chemosphere 2022;287:131981. [PMID: 34826886 DOI: 10.1016/j.chemosphere.2021.131981] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
27 Wang H, Wang H, Yan Q. Peroxymonosulfate activation by algal carbocatalyst for organic dye oxidation: Insights into experimental and theoretical. Sci Total Environ 2021;:151611. [PMID: 34774953 DOI: 10.1016/j.scitotenv.2021.151611] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
28 Tzeng J, Weng C, Yen L, Gaybullaev G, Chang C, de Luna MDG, Lin Y. Inactivation of pathogens by visible light photocatalysis with nitrogen-doped TiO2 and tourmaline-nitrogen co-doped TiO2. Separation and Purification Technology 2021;274:118979. [DOI: 10.1016/j.seppur.2021.118979] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
29 Dhiman P, Rana G, Kumar A, Sharma G, Vo DN, Algarni TS, Naushad M, Alothman ZA. Nanostructured magnetic inverse spinel Ni–Zn ferrite as environmental friendly visible light driven photo-degradation of levofloxacin. Chemical Engineering Research and Design 2021;175:85-101. [DOI: 10.1016/j.cherd.2021.08.028] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
30 Yang Y, Ji W, Li X, Lin H, Chen H, Bi F, Zheng Z, Xu J, Zhang X. Insights into the mechanism of enhanced peroxymonosulfate degraded tetracycline using metal organic framework derived carbonyl modified carbon-coated Fe0. J Hazard Mater 2021;:127640. [PMID: 34753650 DOI: 10.1016/j.jhazmat.2021.127640] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 12.0] [Reference Citation Analysis]
31 Liang J, Fu L. Activation of peroxymonosulfate (PMS) by Co3O4 quantum dots decorated hierarchical C@Co3O4 for degradation of organic pollutants: Kinetics and radical-nonradical cooperation mechanisms. Applied Surface Science 2021;563:150335. [DOI: 10.1016/j.apsusc.2021.150335] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
32 Zhong Y, Shih K, Diao Z, Song G, Su M, Hou L, Chen D, Kong L. Peroxymonosulfate activation through LED-induced ZnFe2O4 for levofloxacin degradation. Chemical Engineering Journal 2021;417:129225. [DOI: 10.1016/j.cej.2021.129225] [Cited by in Crossref: 49] [Cited by in F6Publishing: 54] [Article Influence: 24.5] [Reference Citation Analysis]
33 Goulart LA, Moratalla A, Lanza MRV, Sáez C, Rodrigo MA. Photoelectrocatalytic treatment of levofloxacin using Ti/MMO/ZnO electrode. Chemosphere 2021;284:131303. [PMID: 34182289 DOI: 10.1016/j.chemosphere.2021.131303] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Yan Y, Zhang H, Wang W, Li W, Ren Y, Li X. Synthesis of Fe0/Fe3O4@porous carbon through a facile heat treatment of iron-containing candle soots for peroxymonosulfate activation and efficient degradation of sulfamethoxazole. Journal of Hazardous Materials 2021;411:124952. [DOI: 10.1016/j.jhazmat.2020.124952] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 17.0] [Reference Citation Analysis]
35 Gao Y, Cong S, Yu H, Zou D. Investigation on microwave absorbing properties of 3D C@ZnCo2O4 as a highly active heterogenous catalyst and the degradation of ciprofloxacin by activated persulfate process. Separation and Purification Technology 2021;262:118330. [DOI: 10.1016/j.seppur.2021.118330] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
36 Meng F, Wang Y, Chen Z, Hu J, Lu G, Ma W. Synthesis of CQDs@FeOOH nanoneedles with abundant active edges for efficient electro-catalytic degradation of levofloxacin: Degradation mechanism and toxicity assessment. Applied Catalysis B: Environmental 2021;282:119597. [DOI: 10.1016/j.apcatb.2020.119597] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 16.5] [Reference Citation Analysis]
37 Wu Z, Liang Y, Zou D, Yuan X, Xiao Z, Deng Y, Zhou Y, Jiang L, Qin P. Enhanced heterogeneous activation of persulfate by NixCo3–xO4 for oxidative degradation of tetracycline and bisphenol A. Journal of Environmental Chemical Engineering 2020;8:104451. [DOI: 10.1016/j.jece.2020.104451] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
38 Zhao Y, Yuan X, Jiang L, Li X, Zhang J, Wang H. Reutilization of cathode material from spent batteries as a heterogeneous catalyst to remove antibiotics in wastewater via peroxymonosulfate activation. Chemical Engineering Journal 2020;400:125903. [DOI: 10.1016/j.cej.2020.125903] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 11.3] [Reference Citation Analysis]