BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhong X, Zhang K, Wu D, Ye X, Huang W, Zhou B. Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation. Chemical Engineering Journal 2020;383:123148. [DOI: 10.1016/j.cej.2019.123148] [Cited by in Crossref: 87] [Cited by in F6Publishing: 90] [Article Influence: 29.0] [Reference Citation Analysis]
Number Citing Articles
1 Olusegun SJ, Souza TG, Souza GDO, Osial M, Mohallem ND, Ciminelli VS, Krysinski P. Iron-based materials for the adsorption and photocatalytic degradation of pharmaceutical drugs: A comprehensive review of the mechanism pathway. Journal of Water Process Engineering 2023;51:103457. [DOI: 10.1016/j.jwpe.2022.103457] [Reference Citation Analysis]
2 Mahjoore M, Honarmand M, Aryafar A. Plant-based green fabrication of CuO-CdO-bentonite S-scheme heterojunction with enhanced photocatalytic performance for the degradation of levofloxacin. Environ Sci Pollut Res Int 2023. [PMID: 36692716 DOI: 10.1007/s11356-023-25277-1] [Reference Citation Analysis]
3 Pan M, Tang-hu S, Ni C, Chen H, Pan B. Constructing Ti(III)-laden TiO2 Nanotube Arrays for Electrochemical Defluorination of Levofloxacin. Journal of Environmental Chemical Engineering 2023. [DOI: 10.1016/j.jece.2023.109392] [Reference Citation Analysis]
4 Yang B, Lei G, Zhao T, Shi Z, Yun D, Guo Y, Liu C, Yang M, Yang Q, Sun S, Cui J. One-pot construction of S–Mo co-doped BiOCl toward simultaneously decreasing size, tuning energy band structure, and promoting charge separation for efficient photocatalytic degradation of organic pollutants. Materials Today Chemistry 2023;27:101279. [DOI: 10.1016/j.mtchem.2022.101279] [Reference Citation Analysis]
5 Anwar M, Alghamdi KS, Zulfiqar S, Warsi MF, Waqas M, Hasan M. Ag-decorated BiOCl anchored onto the g-C3N4 sheets for boosted photocatalytic and antimicrobial activities. Optical Materials 2023;135:113336. [DOI: 10.1016/j.optmat.2022.113336] [Reference Citation Analysis]
6 Yi S, Li Y, Sun Z, Li S, Gao L. Z-Scheme ZnV2O4/g-C3N4 Heterojunction Catalyst Produced by the One-Pot Method for the Degradation of Tetracycline under Visible Light. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03604] [Reference Citation Analysis]
7 He W, Jia H, Li Z, Miao C, Lu R, Zhang S, Zhang Z. Magnetic recyclable g-C3N4/Fe3O4@MIL-100(Fe) ternary catalyst for photo-Fenton degradation of ciprofloxacin. Journal of Environmental Chemical Engineering 2022;10:108698. [DOI: 10.1016/j.jece.2022.108698] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Liu R, Shi Y, Lin L, Wang Z, Liu C, Bi J, Hou Y, Lin S, Wu L. Surface Lewis acid sites and oxygen vacancies of Bi2WO6 synergistically promoted photocatalytic degradation of levofloxacin. Applied Surface Science 2022;605:154822. [DOI: 10.1016/j.apsusc.2022.154822] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Abukhadra MR, Alhammadi AA, Khim JS, Ajarem JS, Allam AA, Shaban MS. Enhanced adsorption and visible light photocatalytic removal of 5-Fluorouracil residuals using environmental NiO/geopolymer nanocomposite: Steric, energetic, and oxidation studies. Journal of Environmental Chemical Engineering 2022;10:108569. [DOI: 10.1016/j.jece.2022.108569] [Reference Citation Analysis]
10 Xie T, Sun S, Xu J, Luo Y, Cui J. Purposefully designing Co-S-codoping in hierarchical BiOCl architectures and elucidating the mechanism for enhanced visible-light-driven photocatalytic activity. Applied Surface Science 2022;604:154582. [DOI: 10.1016/j.apsusc.2022.154582] [Reference Citation Analysis]
11 Wei S, Fan S, Zhang M, Ren J, Jia B, Wang Y, Wu R, Fang Z, Liang Q. Dye-sensitized Bi2MoO6 for highly efficient photocatalytic degradation of levofloxacin under LED light irradiation. Materials Today Sustainability 2022. [DOI: 10.1016/j.mtsust.2022.100311] [Reference Citation Analysis]
12 Han Z, Lv M, Shi X, Li G, Zhao J, Zhao X. Regulating the Electronic Structure of Fe3+-Doped BiOClxI1–x Solid Solution by an Amidoxime-Functionalized Fibrous Support for Efficient Photocatalysis. Adv Fiber Mater 2022. [DOI: 10.1007/s42765-022-00220-0] [Reference Citation Analysis]
13 Chan YY, Pang YL, Lim S, Chong WC, Shuit SH. Plant-mediated synthesis of silver-doped ZnO nanoparticles with high sonocatalytic activity: Sonocatalytic behavior, kinetic and thermodynamic study. Environ Sci Pollut Res 2022. [DOI: 10.1007/s11356-022-24145-8] [Reference Citation Analysis]
14 Liu J, Wang H, Chang M, Sun M, Zhang C, Yang L, Du H, Luo Z. Facile synthesis of BiOCl with extremely superior visible light photocatalytic activity synergistically enhanced by Co doping and oxygen vacancies. Separation and Purification Technology 2022;301:121953. [DOI: 10.1016/j.seppur.2022.121953] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Fang Y, Wang H, Wang X, Zhou Y, Wu L, Duo Wu W, Wu Z. Constructing thin BiOCl nanoplates for highly efficient photocatalytic peroxymonosulfate activation: In-depth understanding of the activation process. Separation and Purification Technology 2022. [DOI: 10.1016/j.seppur.2022.122771] [Reference Citation Analysis]
16 Kaur P, Jyoti, Singh S, Aggarwal D, Nitansh, Kumar V, Tikoo K, Kaushik A, Singhal S. Synergizing hexagonal ferrite with transition metals in core-shell-shell nanostructures (SrFe@Dop@M) as dualistic probe for detoxification and electrochemical detection of pharmaceutical drugs. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.10.111] [Reference Citation Analysis]
17 Zhang Q, Yang Z, Zhang R, Hao Y, Xu L, Liu C. A novel recyclable BiOCl/BiOI/MnxZn1-xFe2O4 photocatalyst with enhanced Rhodamine B removal under visible light. Journal of Physics and Chemistry of Solids 2022;170:110892. [DOI: 10.1016/j.jpcs.2022.110892] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Yin Z, Zhang X, Yuan X, Wei W, Xiao Y, Cao S. Constructing TiO2@Bi2O3 multi-heterojunction hollow structure for enhanced visible-light photocatalytic performance. Journal of Cleaner Production 2022;375:134112. [DOI: 10.1016/j.jclepro.2022.134112] [Reference Citation Analysis]
19 Sheng S, Fu J, Song S, He Y, Qian J, Yi Z. Enhanced electron transfer for activation of peroxymonosulfate via MoS2 modified iron-based perovskite. Environ Technol 2022;:1-41. [PMID: 36250403 DOI: 10.1080/09593330.2022.2137438] [Reference Citation Analysis]
20 Zhang H, Xiao Y, Tian L, Tang Y, Liu X, Shi Z, Wu Z, Wei Z. In-situ fabrication of a phase continuous transition Bismuth iodide/Bismuth niobate heterojunction: Interface regulation and the enhanced photodegradation mechanism. Chemical Physics 2022;562:111644. [DOI: 10.1016/j.chemphys.2022.111644] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Hu X, Chen X, Tang Y, Xu Z, Zeng Y, Wang Y, Zhao Y, Wu Y, Wang G. Effects of g-C3N4 on bacterial community and tetracycline resistance genes in two typical sediments in tetracycline pollution remediation. Front Microbiol 2022;13:964401. [DOI: 10.3389/fmicb.2022.964401] [Reference Citation Analysis]
22 Cao T, Zhou D, Wang X, Cui C. Photocatalytic degradation of bisphenol A over Co-BiOCl/biochar hybrid catalysts: Properties, efficiency and mechanism. Journal of Molecular Liquids 2022;362:119622. [DOI: 10.1016/j.molliq.2022.119622] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Ding C, Guo J, Gan W, Chen P, Li Z, Yin Z, Qi S, Deng S, Zhang M, Sun Z. Ag nanoparticles decorated Z-scheme CoAl-LDH/TiO2 heterojunction photocatalyst for expeditious levofloxacin degradation and Cr(VI) reduction. Separation and Purification Technology 2022;297:121480. [DOI: 10.1016/j.seppur.2022.121480] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Guo P, Hu X. ZIF-derived CoFe2O4/Fe2O3 combined with g-C3N4 as high-efficient photocatalysts for enhanced degradation of levofloxacin in the presence of peroxymonosulfate. Journal of Alloys and Compounds 2022;914:165338. [DOI: 10.1016/j.jallcom.2022.165338] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Deng Q, Zhang X, Chang L, Chai H, Huang Y. The MOF/LDH derived heterostructured Co3O4/MnCo2O4 composite for enhanced degradation of levofloxacin by peroxymonosulfate activation. Separation and Purification Technology 2022;294:121182. [DOI: 10.1016/j.seppur.2022.121182] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
26 Altoom N, Adlii A, Othman SI, Allam AA, Alqhtani HA, Al-otaibi FS, Abukhadra MR. Synthesis and characterization of β-cyclodextrin functionalized zeolite-A as biocompatible carrier for Levofloxacin drug; loading, release, cytotoxicity, and anti-inflammatory studies. Journal of Solid State Chemistry 2022;312:123280. [DOI: 10.1016/j.jssc.2022.123280] [Reference Citation Analysis]
27 Cai M, Liu Y, Dong K, Wang C, Li S. A novel S-scheme heterojunction of Cd0.5Zn0.5S/BiOCl with oxygen defects for antibiotic norfloxacin photodegradation: Performance, Mechanism, and intermediates toxicity evaluation. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.08.136] [Cited by in Crossref: 1] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
28 Wu L, Liu Y, Wang Y, Sun C, Zhao G, Hu J, Long X, Zhang H, Wu H, Jiao F. CoAl-Layered double hydroxides coupled with BiOCl as Z-Scheme heterostructure for enhanced photocatalytic removal of antibiotic pollutants under visible light. J Mater Sci: Mater Electron. [DOI: 10.1007/s10854-022-08746-0] [Reference Citation Analysis]
29 Abukhadra MR, Alhammadi AA, Seong Khim J, Ajarem JS, Allam AA. Enhanced decontamination of Levofloxacin residuals from water using recycled glass based a green zinc oxide/mesoporous silica nanocomposite; adsorption and advanced oxidation studies. Journal of Cleaner Production 2022;356:131836. [DOI: 10.1016/j.jclepro.2022.131836] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Weng P, Cai Q, Zhang L, Wu H, Wu K, Guo J. Sn2+ reduction to synthesis of the Mo doped hollow hierarchical Bi/BiOBr microspheres for efficient ciprofloxacin degradation under visible light. Solid State Sciences 2022. [DOI: 10.1016/j.solidstatesciences.2022.106960] [Reference Citation Analysis]
31 Wu D, Zhang X, Liu S, Ren Z, Xing Y, Jin X, Ni G. Fabrication of a Z-scheme CeO2/Bi2O4 heterojunction photocatalyst with superior visible-light responsive photocatalytic performance. Journal of Alloys and Compounds 2022;909:164671. [DOI: 10.1016/j.jallcom.2022.164671] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
32 Jalloul G, Al-mousawi A, Chocr F, Merhi A, Awala H, Boyadjian C. Fe-Sensitized Zeolite Supported TiO2 for the Degradation of Tetracycline Using Blue LED Irradiation. Front Environ Sci 2022;10:873257. [DOI: 10.3389/fenvs.2022.873257] [Reference Citation Analysis]
33 Yu Y, Shang Z, Yang Z, Wang X, Feng P. One-step synthesis via solution combustion of Fe(III)-doped BiOCl nanoparticles with high photocatalytic activity. J Sol-Gel Sci Technol. [DOI: 10.1007/s10971-022-05795-z] [Reference Citation Analysis]
34 Wu L, Jiang G, Wang X, Wang Y, Zhou Y, Wu Z. Amorphous iron oxides anchored on BiOCl nanoplates as robust catalysts for high-performance photo-Fenton oxidation. J Colloid Interface Sci 2022;622:62-74. [PMID: 35489102 DOI: 10.1016/j.jcis.2022.04.092] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
35 Marinho BA, Suhadolnik L, Likozar B, Huš M, Marinko Ž, Čeh M. Photocatalytic, electrocatalytic and photoelectrocatalytic degradation of pharmaceuticals in aqueous media: Analytical methods, mechanisms, simulations, catalysts and reactors. Journal of Cleaner Production 2022;343:131061. [DOI: 10.1016/j.jclepro.2022.131061] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
36 Rong F, Xue Y, Tang W, Lu Q, Wei M, Guo E, Pang Y. Visible-light-active 1D Ag-CoWO4/CdWO4 plasmonic photocatalysts boosting levofloxacin conversion. Journal of the Taiwan Institute of Chemical Engineers 2022;133:104267. [DOI: 10.1016/j.jtice.2022.104267] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
37 Liu H, Huo W, Zhang TC, Ouyang L, Yuan S. Photocatalytic removal of tetracycline by a Z-scheme heterojunction of bismuth oxyiodide/exfoliated g-C3N4: performance, mechanism, and degradation pathway. Materials Today Chemistry 2022;23:100729. [DOI: 10.1016/j.mtchem.2021.100729] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
38 Yin Y, Yao Y, Qian X, Sun M, Huang B, He G, Chen H. Fabrication of Fe/BiOCl/RGO with enhanced photocatalytic degradation of ciprofloxacin under visible light irradiation. Materials Science in Semiconductor Processing 2022;140:106384. [DOI: 10.1016/j.mssp.2021.106384] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
39 Xu K, Xu D, Li Z, Zhang S, Tong L, Peng J, Zhang S, Shen J, Chen X. Enhanced visible-light photocatalytic degradation of ciprofloxacin hydrochloride by bulk iodine doped BiOCl with rich oxygen vacancy. Applied Surface Science 2022;578:152083. [DOI: 10.1016/j.apsusc.2021.152083] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
40 Wang C, He D, Zhao H, Wang C, Wang K. Study on high efficiency and fast photodegradation of Bi2WO6/BiOBr/PAN nanofibrous film. Journal of Materials Research and Technology 2022;17:2818-30. [DOI: 10.1016/j.jmrt.2022.02.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Abukhadra MR, Saad I, Khim JS, Ajarem JS, Allam AA. Enhanced oxidation of antibiotic residuals (Levofloxacin) using a green composite of ZnO@polyaniline/bentonite (Zn@PA/BE) as multifunctional photocatalyst under visible light. International Journal of Environmental Analytical Chemistry. [DOI: 10.1080/03067319.2022.2032010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Zhang Q, Sun X, Dang Y, Zhu JJ, Zhao Y, Xu X, Zhou Y. A novel electrochemically enhanced homogeneous PMS-heterogeneous CoFe2O4 synergistic catalysis for the efficient removal of levofloxacin. J Hazard Mater 2022;424:127651. [PMID: 34772555 DOI: 10.1016/j.jhazmat.2021.127651] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
43 Varma K, Shukla A, Tayade R, Mishra M, Nguyen V, Gandhi V. Interaction of levofloxacin with reverse micelle sol-gel synthesized TiO2 nanoparticles: Revealing ligand-to-metal charge transfer (LMCT) mechanism enhances photodegradation of antibiotics under visible light. Materials Letters 2022;309:131304. [DOI: 10.1016/j.matlet.2021.131304] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Grao M, Redfern J, Kelly P, Ratova M. Photocatalytic degradation of contaminants of emerging concern using a low-cost and efficient black bismuth titanate-based water treatment reactor. Journal of Water Process Engineering 2022;45:102525. [DOI: 10.1016/j.jwpe.2021.102525] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Dang J, Guo J, Wang L, Guo F, Shi W, Li Y, Guan W. Construction of Z-scheme Fe3O4/BiOCl/BiOI heterojunction with superior recyclability for improved photocatalytic activity towards tetracycline degradation. Journal of Alloys and Compounds 2022;893:162251. [DOI: 10.1016/j.jallcom.2021.162251] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 23.0] [Reference Citation Analysis]
46 Liao H, Liu C, Zhong J, Li J. Fabrication of BiOCl with adjustable oxygen vacancies and greatly elevated photocatalytic activity by using bamboo fiber surface embellishment. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;634:127892. [DOI: 10.1016/j.colsurfa.2021.127892] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
47 Mahdi R, Mohammed EH, Al-keisy A, Alsultan M, Majid WA. Tailoring the morphology of BiNbO4 of polymorph in 2D nanosheets for enhancement of photocatalytic activity in the visible range. Physica E: Low-dimensional Systems and Nanostructures 2022;136:115009. [DOI: 10.1016/j.physe.2021.115009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Li S, Wang C, Cai M, Yang F, Liu Y, Chen J, Zhang P, Li X, Chen X. Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction. Chemical Engineering Journal 2022;428:131158. [DOI: 10.1016/j.cej.2021.131158] [Cited by in Crossref: 137] [Cited by in F6Publishing: 139] [Article Influence: 137.0] [Reference Citation Analysis]
49 Dung NT, Thu LM, Thuy UTD, Thien VT, Thuy NT, Tien NTC, Lin KA, Huy NN. Mechanism insight into the photocatalytic degradation of fluoroquinolone antibiotics by the ZIF-8@Bi2MoO6 heterojunction. Environ Sci : Nano 2022. [DOI: 10.1039/d2en00219a] [Reference Citation Analysis]
50 Xiong D, Zhao W, Guo J, Li S, Ye Y, E L, Yang X. Highly efficient and reusable BiOCl photocatalyst modulating by hydrogel immobilization and oxygen vacancies engineering. Separation and Purification Technology 2021;277:119628. [DOI: 10.1016/j.seppur.2021.119628] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
51 Abukhadra MR, Gameel Basyouny M, Khim JS, Allam AA, Ajarem JS, Maodaa SN. Green functionalization of clinoptilolite with MgO nano-platelets as adsorbent for different species of antibiotic residuals (levofloxacin, ciprofloxacin, and pefloxacin); equilibrium studies. Separation Science and Technology. [DOI: 10.1080/01496395.2021.2005627] [Reference Citation Analysis]
52 Zhang Y, Hua S, Sun X, Liu Z, Dang Y, Zhang L, Zhou Y. A novel electrochemical cathode based on sea urchin-like NiO/Co3O4 composite inducing efficient Fenton-like process for levofloxacin degradation. Applied Catalysis A: General 2021;628:118403. [DOI: 10.1016/j.apcata.2021.118403] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
53 Liu J, Li Z, Wang M, Jin C, Kang J, Tang Y, Li S. Eu2O3/Co3O4 nanosheets for levofloxacin removal via peroxymonosulfate activation: Performance, mechanism and degradation pathway. Separation and Purification Technology 2021;274:118666. [DOI: 10.1016/j.seppur.2021.118666] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
54 Li G, Huang S, Zhu N, Yuan H, Ge D, Wei Y. Defect-rich heterojunction photocatalyst originated from the removal of chloride ions and its degradation mechanism of norfloxacin. Chemical Engineering Journal 2021;421:127852. [DOI: 10.1016/j.cej.2020.127852] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
55 Guo J, Li X, Liang J, Yuan X, Jiang L, Yu H, Sun H, Zhu Z, Ye S, Tang N, Zhang J. Fabrication and regulation of vacancy-mediated bismuth oxyhalide towards photocatalytic application: Development status and tendency. Coordination Chemistry Reviews 2021;443:214033. [DOI: 10.1016/j.ccr.2021.214033] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 22.5] [Reference Citation Analysis]
56 Mohammadzadeh M, Haghighi M, Shabani M. Self-assembled leaf architecture of 3D tremella-like (BiOCOOH)x(Bi2MoO6)1-x solid solution nanophotocatalyst with effective photodegradation of medication effluent in sun spectrum: In-situ ultrasound-induced solvothermal design. Chemical Engineering Journal 2021;419:129516. [DOI: 10.1016/j.cej.2021.129516] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
57 Dardir FM, Ahmed EA, Soliman MF, Othman SI, Allam AA, Alwail MA, Abukhadra MR. Synthesis of chitosan/Al-MCM-41 nanocomposite from natural microcline as a carrier for levofloxacin drug of controlled loading and release properties; Equilibrium, release kinetic, and cytotoxicity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;624:126805. [DOI: 10.1016/j.colsurfa.2021.126805] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
58 Cao T, Cui H, Zhang Q, Cui C. Facile synthesis of Co(Ⅱ)-BiOCl@biochar nanosheets for photocatalytic degradation of p-nitrophenol under vacuum ultraviolet (VUV) irradiation. Applied Surface Science 2021;559:149938. [DOI: 10.1016/j.apsusc.2021.149938] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
59 Castaño LI, Doria Herrera GM, Grisales Castañeda DS. Wastewater Treatment by Heterogeneous Photocatalysis: A Systematic Review. Rev Fac Cienc Básicas 2021;16:51-64. [DOI: 10.18359/rfcb.5166] [Reference Citation Analysis]
60 Chen P, Zhang Z, Yang S, Yang Y, Sun Y. Synthesis of BiOCl/ZnMoO4 heterojunction with oxygen vacancy for enhanced photocatalytic activity. J Mater Sci: Mater Electron 2021;32:23189-205. [DOI: 10.1007/s10854-021-06805-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
61 do Nascimento GE, de Freitas RA, Rodríguez-Díaz JM, da Silva PM, Napoleão TH, Duarte MMMB. Degradation of the residual textile mixture cetyltrimethylammonium bromide/remazol yellow gold RNL-150%/reactive blue BF-5G: evaluation photo-peroxidation and photo-Fenton processes in LED and UV-C photoreactors. Environ Sci Pollut Res Int 2021;28:64630-41. [PMID: 34318422 DOI: 10.1007/s11356-021-15502-0] [Reference Citation Analysis]
62 Li S, Wang C, Liu Y, Xue B, Jiang W, Liu Y, Mo L, Chen X. Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunction photocatalyst: Mineralization activity, degradation pathways and boosted charge separation mechanism. Chemical Engineering Journal 2021;415:128991. [DOI: 10.1016/j.cej.2021.128991] [Cited by in Crossref: 157] [Cited by in F6Publishing: 164] [Article Influence: 78.5] [Reference Citation Analysis]
63 Ma C, Wei J, Jiang K, Yang Z, Yang X, Yang K, Zhang Y, Zhang C. Self-assembled micro-flowers of ultrathin Au/BiOCOOH nanosheets photocatalytic degradation of tetracycline hydrochloride and reduction of CO2. Chemosphere 2021;283:131228. [PMID: 34146887 DOI: 10.1016/j.chemosphere.2021.131228] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
64 Yang X, Xie X, Li S, Zhang W, Zhang X, Chai H, Huang Y. The POM@MOF hybrid derived hierarchical hollow Mo/Co bimetal oxides nanocages for efficiently activating peroxymonosulfate to degrade levofloxacin. J Hazard Mater 2021;419:126360. [PMID: 34175702 DOI: 10.1016/j.jhazmat.2021.126360] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 10.5] [Reference Citation Analysis]
65 Li J, Yang L, Lai B, Liu C, He Y, Yao G, Li N. Recent progress on heterogeneous Fe-based materials induced persulfate activation for organics removal. Chemical Engineering Journal 2021;414:128674. [DOI: 10.1016/j.cej.2021.128674] [Cited by in Crossref: 39] [Cited by in F6Publishing: 44] [Article Influence: 19.5] [Reference Citation Analysis]
66 Yao L, Yang H, Chen Z, Qiu M, Hu B, Wang X. Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere 2021;273:128576. [DOI: 10.1016/j.chemosphere.2020.128576] [Cited by in Crossref: 166] [Cited by in F6Publishing: 176] [Article Influence: 83.0] [Reference Citation Analysis]
67 Grilla E, Kagialari MN, Petala A, Frontistis Z, Mantzavinos D. Photocatalytic Degradation of Valsartan by MoS2/BiOCl Heterojunctions. Catalysts 2021;11:650. [DOI: 10.3390/catal11060650] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
68 Talreja N, Afreen S, Ashfaq M, Chauhan D, Mera AC, Rodríguez CA, Mangalaraja RV. Bimetal (Fe/Zn) doped BiOI photocatalyst: An effective photodegradation of tetracycline and bacteria. Chemosphere 2021;280:130803. [PMID: 33975241 DOI: 10.1016/j.chemosphere.2021.130803] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
69 Wu S, Yu X, Zhang J, Zhang Y, Zhu Y, Zhu M. Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal. Chemical Engineering Journal 2021;411:128555. [DOI: 10.1016/j.cej.2021.128555] [Cited by in Crossref: 84] [Cited by in F6Publishing: 92] [Article Influence: 42.0] [Reference Citation Analysis]
70 Jia T, Wu J, Ji Z, Peng C, Liu Q, Shi M, Zhu J, Wang H, Liu D, Zhou M. Surface defect engineering of Fe-doped Bi7O9I3 microflowers for ameliorating charge-carrier separation and molecular oxygen activation. Applied Catalysis B: Environmental 2021;284:119727. [DOI: 10.1016/j.apcatb.2020.119727] [Cited by in Crossref: 57] [Cited by in F6Publishing: 48] [Article Influence: 28.5] [Reference Citation Analysis]
71 Rameshbabu R, Pecchi G, Delgado EJ, Mangalaraja R, Sathish M. BiOCl ultrathin nanosheets modified with Fe3+ for enhanced visible light driven photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry 2021;411:113211. [DOI: 10.1016/j.jphotochem.2021.113211] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
72 He W, Li Z, Lv S, Niu M, Zhou W, Li J, Lu R, Gao H, Pan C, Zhang S. Facile synthesis of Fe3O4@MIL-100(Fe) towards enhancing photo-Fenton like degradation of levofloxacin via a synergistic effect between Fe3O4 and MIL-100(Fe). Chemical Engineering Journal 2021;409:128274. [DOI: 10.1016/j.cej.2020.128274] [Cited by in Crossref: 53] [Cited by in F6Publishing: 59] [Article Influence: 26.5] [Reference Citation Analysis]
73 Mostafa M, El-Meligy MA, Sharaf M, Soliman AT, AbuKhadra MR. Insight into chitosan/zeolite-A nanocomposite as an advanced carrier for levofloxacin and its anti-inflammatory properties; loading, release, and anti-inflammatory studies. Int J Biol Macromol 2021;179:206-16. [PMID: 33675827 DOI: 10.1016/j.ijbiomac.2021.02.201] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
74 Velempini T, Prabakaran E, Pillay K. Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water—a review. Materials Today Chemistry 2021;19:100380. [DOI: 10.1016/j.mtchem.2020.100380] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 18.0] [Reference Citation Analysis]
75 Zhang T, Chen L, Jiang T, Hou J, Zhang G, Hussain A. Chemical precipitation synthesis of Bi0.7Fe0.3OCl nanosheets via Fe (III)-doped BiOCl for highly visible light photocatalytic performance. Materials Today Communications 2021;26:102145. [DOI: 10.1016/j.mtcomm.2021.102145] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
76 Tao S, Sun S, Zhao T, Cui J, Yang M, Yu X, Yang Q, Zhang X, Liang S. One-pot construction of Ta-doped BiOCl/Bi heterostructures toward simultaneously promoting visible light harvesting and charge separation for highly enhanced photocatalytic activity. Applied Surface Science 2021;543:148798. [DOI: 10.1016/j.apsusc.2020.148798] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
77 Mokhtari F, Tahmasebi N. Hydrothermal synthesis of W-doped BiOCl nanoplates for photocatalytic degradation of rhodamine B under visible light. Journal of Physics and Chemistry of Solids 2021;149:109804. [DOI: 10.1016/j.jpcs.2020.109804] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
78 Gao P, Yang Y, Yin Z, Kang F, Fan W, Sheng J, Feng L, Liu Y, Du Z, Zhang L. A critical review on bismuth oxyhalide based photocatalysis for pharmaceutical active compounds degradation: Modifications, reactive sites, and challenges. J Hazard Mater 2021;412:125186. [PMID: 33516110 DOI: 10.1016/j.jhazmat.2021.125186] [Cited by in Crossref: 40] [Cited by in F6Publishing: 47] [Article Influence: 20.0] [Reference Citation Analysis]
79 Talreja N, Ashfaq M, Chauhan D, Mera AC, Rodríguez CA. Strategic Doping Approach of the Fe-BiOI Microstructure: An Improved Photodegradation Efficiency of Tetracycline. ACS Omega 2021;6:1575-83. [PMID: 33490817 DOI: 10.1021/acsomega.0c05398] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
80 Gulen B, Demircivi P, Simsek EB. UV-A light irradiated photocatalytic performance of hydrothermally obtained W doped BaZrO3 catalyst against the degradation of levofloxacin and tetracycline antibiotic. Journal of Photochemistry and Photobiology A: Chemistry 2021;404:112869. [DOI: 10.1016/j.jphotochem.2020.112869] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
81 Löber M, Geißenhöner CS, Ströbele M, Romao CP, Meyer H. Synthesis, Structure and Electronic Properties of Three Tin Oxide Halides. Eur J Inorg Chem 2021;2021:283-8. [DOI: 10.1002/ejic.202000874] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
82 Sun J, Han N, Gu Y, Lu X, Si L, Zhang Q. Hole Doping to Enhance the Photocatalytic Activity of Bi4NbO8Cl. Catalysts 2020;10:1425. [DOI: 10.3390/catal10121425] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
83 Jing Q, li H. Catalytic Air Oxidation of Refractory Organics in Wastewater. COCAT 2020;7:179-98. [DOI: 10.2174/2213337207999200802025735] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
84 Hu Z, Ge M, Guo C. Efficient removal of levofloxacin from different water matrices via simultaneous adsorption and photocatalysis using a magnetic Ag3PO4/rGO/CoFe2O4 catalyst. Chemosphere 2021;268:128834. [PMID: 33168283 DOI: 10.1016/j.chemosphere.2020.128834] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
85 Chen G, Yu Y, Liang L, Duan X, Li R, Lu X, Yan B, Li N, Wang S. Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: A critical review. J Hazard Mater 2021;408:124461. [PMID: 33172681 DOI: 10.1016/j.jhazmat.2020.124461] [Cited by in Crossref: 84] [Cited by in F6Publishing: 99] [Article Influence: 28.0] [Reference Citation Analysis]
86 Abukhadra MR, Mohamed AS, El-Sherbeeny AM, Soliman ATA. Enhanced Adsorption of Toxic and Biologically Active Levofloxacin Residuals from Wastewater Using Clay Nanotubes as a Novel Fixed Bed: Column Performance and Optimization. ACS Omega 2020;5:26195-205. [PMID: 33073145 DOI: 10.1021/acsomega.0c03785] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
87 Abukhadra MR, Helmy A, Sharaf MF, El-meligy MA, Ahmed Soliman AT. Instantaneous oxidation of levofloxacin as toxic pharmaceutical residuals in water using clay nanotubes decorated by ZnO (ZnO/KNTs) as a novel photocatalyst under visible light source. Journal of Environmental Management 2020;271:111019. [DOI: 10.1016/j.jenvman.2020.111019] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
88 Nascimento GED, Soares Oliveira MA, da Rocha Santana RM, Ribeiro BG, Silva Sales DC, Rodríguez-díaz JM, Napoleão DC, da Motta Sobrinho MA, Duarte MMMB. Investigation of paracetamol degradation using LED and UV-C photo-reactors. Water Science and Technology 2020;81:2545-58. [DOI: 10.2166/wst.2020.310] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
89 Zhang J, Zhu K, Zhu Y, Qin C, Liu L, Liu D, Wang Y, Gan W, Fu X, Hao H. Enhanced photocatalytic degradation of tetracycline hydrochloride by Al-doped BiOCl microspheres under simulated sunlight irradiation. Chemical Physics Letters 2020;750:137483. [DOI: 10.1016/j.cplett.2020.137483] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
90 Shi H, Wei X, Zhang J, Long Q, Liu W, Zhou Y, Ding Y. Green Synthesis and Direct Z‐Scheme CdSe/BiOCl Heterojunctions for Enhanced Photocatalytic Performance. ChemistrySelect 2020;5:6230-5. [DOI: 10.1002/slct.202001289] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
91 Mera AC, Rodríguez CA, Pizarro-castillo L, Meléndrez MF, Valdés H. Effect of temperature and reaction time during solvothermal synthesis of BiOCl on microspheres formation: implications in the photocatalytic oxidation of gallic acid under simulated solar radiation. J Sol-Gel Sci Technol 2020;95:146-56. [DOI: 10.1007/s10971-020-05312-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
92 Wang X, Zhang X, Zhang Y, Wang Y, Sun S, Wu WD, Wu Z. Nanostructured semiconductor supported iron catalysts for heterogeneous photo-Fenton oxidation: a review. J Mater Chem A 2020;8:15513-46. [DOI: 10.1039/d0ta04541a] [Cited by in Crossref: 69] [Cited by in F6Publishing: 72] [Article Influence: 23.0] [Reference Citation Analysis]
93 Zhong X, Wu W, Jie H, Tang W, Chen D, Ruan T, Bai H. Degradation of norfloxacin by copper-doped Bi 2 WO 6 -induced sulfate radical-based visible light-Fenton reaction. RSC Adv 2020;10:38024-32. [DOI: 10.1039/d0ra07378d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]