BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang P, Tian R, Lv R, Na B, Liu Q. Water-permeable polylactide blend membranes for hydrophilicity-based separation. Chemical Engineering Journal 2015;269:180-5. [DOI: 10.1016/j.cej.2015.01.111] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Esmaelion F, Tavanai H, Beigi AAM, Bazarganipour M. Application of fibrous structures in separation of water and oil emulsions: A review. Journal of Environmental Chemical Engineering 2022;10:107999. [DOI: 10.1016/j.jece.2022.107999] [Reference Citation Analysis]
2 Deng Y, Zhang N, Huang T, Lei Y, Wang Y. Constructing tubular/porous structures toward highly efficient oil/water separation in electrospun stereocomplex polylactide fibers via coaxial electrospinning technology. Applied Surface Science 2022;573:151619. [DOI: 10.1016/j.apsusc.2021.151619] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
3 Kurusu RS, Demarquette NR. Surface modification to control the water wettability of electrospun mats. International Materials Reviews 2018;64:249-87. [DOI: 10.1080/09506608.2018.1484577] [Cited by in Crossref: 36] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
4 Ma W, Zhang M, Liu Z, Kang M, Huang C, Fu G. Fabrication of highly durable and robust superhydrophobic-superoleophilic nanofibrous membranes based on a fluorine-free system for efficient oil/water separation. Journal of Membrane Science 2019;570-571:303-13. [DOI: 10.1016/j.memsci.2018.10.035] [Cited by in Crossref: 117] [Cited by in F6Publishing: 65] [Article Influence: 39.0] [Reference Citation Analysis]
5 Guo G, Liu L, Dang Z, Fang W. Recent Progress of Polyurethane-Based Materials for Oil/Water Separation. NANO 2017;12:1730001. [DOI: 10.1142/s1793292017300018] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
6 Bai L, Zhang Z, Pu J, Feng C, Zhao X, Bao R, Liu Z, Yang M, Yang W. Highly thermally conductive electrospun stereocomplex polylactide fibrous film dip-coated with silver nanowires. Polymer 2020;194:122390. [DOI: 10.1016/j.polymer.2020.122390] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
7 Ma W, Zhang Q, Hua D, Xiong R, Zhao J, Rao W, Huang S, Zhan X, Chen F, Huang C. Electrospun fibers for oil–water separation. RSC Adv 2016;6:12868-84. [DOI: 10.1039/c5ra27309a] [Cited by in Crossref: 123] [Cited by in F6Publishing: 1] [Article Influence: 20.5] [Reference Citation Analysis]
8 Kumarage S, Munaweera I, Kottegoda N. A comprehensive review on electrospun nanohybrid membranes for wastewater treatment. Beilstein J Nanotechnol 2022;13:137-59. [DOI: 10.3762/bjnano.13.10] [Reference Citation Analysis]
9 Su R, Li S, Wu W, Song C, Liu G, Yu Y. Recent progress in electrospun nanofibrous membranes for oil/water separation. Separation and Purification Technology 2021;256:117790. [DOI: 10.1016/j.seppur.2020.117790] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 10.0] [Reference Citation Analysis]
10 Fallahiarezoudar E, Ahmadipourroudposht M, Idris A, Yusof NM, Marvibaigi M, Irfan M. Characterization of maghemite (γ-Fe2O3)-loaded poly-l-lactic acid/thermoplastic polyurethane electrospun mats for soft tissue engineering. J Mater Sci 2016;51:8361-81. [DOI: 10.1007/s10853-016-0087-1] [Cited by in Crossref: 5] [Article Influence: 0.8] [Reference Citation Analysis]
11 Zhao J, Li X, Liu Z. Needle’s vibration in needle-disk electrospinning process: Theoretical model and experimental verification. Journal of Low Frequency Noise, Vibration and Active Control 2019;38:1338-44. [DOI: 10.1177/1461348418817703] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
12 Zubov A, Sin G. Multiscale modeling of poly(lactic acid) production: From reaction conditions to rheology of polymer melt. Chemical Engineering Journal 2018;336:361-75. [DOI: 10.1016/j.cej.2017.12.033] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
13 Zhang J, Zhang F, Song J, Liu L, Si Y, Yu J, Ding B. Electrospun flexible nanofibrous membranes for oil/water separation. J Mater Chem A 2019;7:20075-102. [DOI: 10.1039/c9ta07296a] [Cited by in Crossref: 67] [Cited by in F6Publishing: 3] [Article Influence: 22.3] [Reference Citation Analysis]
14 Guo H, Zhang D, Jiang L. PAN/PVA composite nanofibrous membranes for separating oil-in-water emulsion. J Polym Res 2022;29. [DOI: 10.1007/s10965-022-02954-2] [Reference Citation Analysis]
15 Koushkbaghi S, Jamshidifard S, Zabihisahebi A, Abouchenari A, Darabi M, Irani M. Synthesis of ethyl cellulose/aluminosilicate zeolite nanofibrous membranes for oil–water separation and oil absorption. Cellulose 2019;26:9787-801. [DOI: 10.1007/s10570-019-02738-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
16 Bandehali S, Sanaeepur H, Ebadi Amooghin A, Shirazian S, Ramakrishna S. Biodegradable polymers for membrane separation. Separation and Purification Technology 2021;269:118731. [DOI: 10.1016/j.seppur.2021.118731] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
17 Wang W, Lin J, Cheng J, Cui Z, Si J, Wang Q, Peng X, Turng L. Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties. Journal of Hazardous Materials 2020;385:121582. [DOI: 10.1016/j.jhazmat.2019.121582] [Cited by in Crossref: 32] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
18 Tan C, Li Q, Li Y, Zhang C, Xu L. Preparation of a stable superhydrophobic boat for efficient separation and removal of oil from water. RSC Adv 2016;6:53813-20. [DOI: 10.1039/c6ra06670d] [Cited by in Crossref: 10] [Article Influence: 1.7] [Reference Citation Analysis]
19 Pan G, Xu H, Mu B, Ma B, Yang J, Yang Y. Complete stereo-complexation of enantiomeric polylactides for scalable continuous production. Chemical Engineering Journal 2017;328:759-67. [DOI: 10.1016/j.cej.2017.07.068] [Cited by in Crossref: 21] [Article Influence: 4.2] [Reference Citation Analysis]
20 Peng Y, Guo Z. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation. J Mater Chem A 2016;4:15749-70. [DOI: 10.1039/c6ta06922c] [Cited by in Crossref: 115] [Cited by in F6Publishing: 8] [Article Influence: 19.2] [Reference Citation Analysis]
21 Wu J, Zhang J, Kang Y, Wu G, Chen S, Wang Y. Reusable and Recyclable Superhydrophilic Electrospun Nanofibrous Membranes with In Situ Co-cross-linked Polymer–Chitin Nanowhisker Network for Robust Oil-in-Water Emulsion Separation. ACS Sustainable Chem Eng 2018;6:1753-62. [DOI: 10.1021/acssuschemeng.7b03102] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
22 Hsieh C, Hsu J, Hsu H, Lin W, Juang R. Hierarchical oil–water separation membrane using carbon fabrics decorated with carbon nanotubes. Surface and Coatings Technology 2016;286:148-54. [DOI: 10.1016/j.surfcoat.2015.12.035] [Cited by in Crossref: 36] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
23 Zhao S, Ke H, Yang T, Peng Q, Ge J, Yao L, Xu S, Zhirong D, Pan G. Enhanced Thermal and Antibacterial Properties of Stereo-Complexed Polylactide Fibers Doped With Nano-Silver. Front Mater 2022;9:775333. [DOI: 10.3389/fmats.2022.775333] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Lv R, Yin M, Zheng W, Na B, Wang B, Liu H. Poly(vinylidene fluoride) fibrous membranes doped with polyamide 6 for highly efficient separation of a stable oil/water emulsion: ARTICLE. J Appl Polym Sci 2017;134. [DOI: 10.1002/app.44980] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
25 Kim H, Kim M, Lee W, Kim S. Rapid removal of radioactive cesium by polyacrylonitrile nanofibers containing Prussian blue. J Hazard Mater 2018;347:106-13. [PMID: 29304449 DOI: 10.1016/j.jhazmat.2017.12.050] [Cited by in Crossref: 44] [Cited by in F6Publishing: 25] [Article Influence: 8.8] [Reference Citation Analysis]
26 Arumugham T, Kaleekkal NJ, Rana D, Doraiswamy M. Separation of oil/water emulsions using nano MgO anchored hybrid ultrafiltration membranes for environmental abatement. J Appl Polym Sci 2016;133:n/a-n/a. [DOI: 10.1002/app.42848] [Cited by in Crossref: 28] [Article Influence: 4.0] [Reference Citation Analysis]
27 Li X, Xie X, Lv R, Na B, Wang B, He Y. Nanostructured Polypyrrole Composite Aerogels for a Rechargeable Flexible Aqueous Zn‐Ion Battery with High Rate Capabilities. Energy Technol 2019;7:1801092. [DOI: 10.1002/ente.201801092] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 7.3] [Reference Citation Analysis]
28 Zhang J, Liu L, Si Y, Yu J, Ding B. Rational design of electrospun nanofibrous materials for oil/water emulsion separation. Mater Chem Front 2021;5:97-128. [DOI: 10.1039/d0qm00436g] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 14.0] [Reference Citation Analysis]
29 You X, Liao Y, Tian M, Chew JW, Wang R. Engineering highly effective nanofibrous membranes to demulsify surfactant-stabilized oil-in-water emulsions. Journal of Membrane Science 2020;611:118398. [DOI: 10.1016/j.memsci.2020.118398] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 6.5] [Reference Citation Analysis]
30 Panatdasirisuk W, Liao Z, Vongsetskul T, Yang S. Separation of Oil-in-Water Emulsions Using Hydrophilic Electrospun Membranes with Anisotropic Pores. Langmuir 2017;33:5872-8. [DOI: 10.1021/acs.langmuir.7b01138] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 6.2] [Reference Citation Analysis]
31 Wang X, Yu J, Sun G, Ding B. Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. Materials Today 2016;19:403-14. [DOI: 10.1016/j.mattod.2015.11.010] [Cited by in Crossref: 259] [Cited by in F6Publishing: 160] [Article Influence: 43.2] [Reference Citation Analysis]
32 Liu W, Dong Y, Liu D, Bai Y, Lu X. Polylactic Acid (PLA)/Cellulose Nanowhiskers (CNWs) Composite Nanofibers: Microstructural and Properties Analysis. J Compos Sci 2018;2:4. [DOI: 10.3390/jcs2010004] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
33 Yu W, Zhu L, Shi J, Zhao C. Synthesis of Poly(lactic acid)-block-poly(N,N-dimethylaminoethyl methacrylate) Copolymers with Controllable Block Structures via Reversible Addition Fragmentation Polymerization from Aminolyzed Poly(lactic acid). International Journal of Polymer Science 2018;2018:1-9. [DOI: 10.1155/2018/7361659] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
34 Wei Y, Qi H, Gong X, Zhao S. Specially Wettable Membranes for Oil–Water Separation. Adv Mater Interfaces 2018;5:1800576. [DOI: 10.1002/admi.201800576] [Cited by in Crossref: 118] [Cited by in F6Publishing: 87] [Article Influence: 29.5] [Reference Citation Analysis]
35 Jing Y, Zhang L, Huang R, Bai D, Bai H, Zhang Q, Fu Q. Ultrahigh-performance electrospun polylactide membranes with excellent oil/water separation ability via interfacial stereocomplex crystallization. J Mater Chem A 2017;5:19729-37. [DOI: 10.1039/c7ta05379g] [Cited by in Crossref: 43] [Cited by in F6Publishing: 1] [Article Influence: 8.6] [Reference Citation Analysis]