BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hamouda MS, Labouesse C, Chalut KJ. Nuclear mechanotransduction in stem cells. Current Opinion in Cell Biology 2020;64:97-104. [DOI: 10.1016/j.ceb.2020.05.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Guo P, Zhou Y, Jin Z, Zhou Y, Tan W. Fluid shear stress promotes osteogenesis of bone mesenchymal stem cells at early matrix maturity phase through Lamin A/ METTL3 signal axis. Biochemical Engineering Journal 2022;188:108685. [DOI: 10.1016/j.bej.2022.108685] [Reference Citation Analysis]
2 Martínez-ara G, Taberner N, Takayama M, Sandaltzopoulou E, Villava CE, Bosch-padrós M, Takata N, Trepat X, Eiraku M, Ebisuya M. Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-33115-0] [Reference Citation Analysis]
3 De Belly H, Paluch EK, Chalut KJ. Interplay between mechanics and signalling in regulating cell fate. Nat Rev Mol Cell Biol 2022. [PMID: 35365816 DOI: 10.1038/s41580-022-00472-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
4 Luciano M, Xue S, De Vos WH, Redondo-morata L, Surin M, Lafont F, Hannezo E, Gabriele S. Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation. Nat Phys 2021;17:1382-90. [DOI: 10.1038/s41567-021-01374-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 14.0] [Reference Citation Analysis]
5 Shokrollahi M, Mekhail K. Interphase microtubules in nuclear organization and genome maintenance. Trends Cell Biol 2021;31:721-31. [PMID: 33902985 DOI: 10.1016/j.tcb.2021.03.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
6 Martínez-ara G, Taberner N, Takayama M, Sandaltzopoulou E, Villava CE, Takata N, Eiraku M, Ebisuya M. Optogenetic control of apical constriction induces synthetic morphogenesis in mammalian tissues.. [DOI: 10.1101/2021.04.20.440475] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
7 Stachecka J, Kolodziejski PA, Noak M, Szczerbal I. Alteration of active and repressive histone marks during adipogenic differentiation of porcine mesenchymal stem cells. Sci Rep 2021;11:1325. [PMID: 33446668 DOI: 10.1038/s41598-020-79384-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Hatleberg WL, Hinman VF. Modularity and hierarchy in biological systems: Using gene regulatory networks to understand evolutionary change. Current Topics in Developmental Biology 2021. [DOI: 10.1016/bs.ctdb.2020.11.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Boocock D, Hino N, Ruzickova N, Hirashima T, Hannezo E. Theory of mechanochemical patterning and optimal migration in cell monolayers. Nat Phys 2021;17:267-74. [DOI: 10.1038/s41567-020-01037-7] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 18.5] [Reference Citation Analysis]
10 Wiggan O, DeLuca JG, Stasevich TJ, Bamburg JR. Lamin A/C deficiency enables increased myosin-II bipolar filament ensembles that promote divergent actomyosin network anomalies through self-organization. Mol Biol Cell 2020;31:2363-78. [PMID: 32816614 DOI: 10.1091/mbc.E20-01-0017-T] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
11 Wiggan O, Deluca JG, Stasevich TJ, Bamburg JR. Lamin A/C Deficiency Enables Increased Myosin2 Bipolar Filament Ensembles Which Promote Divergent Actomyosin Network Anomalies Through Self Organization.. [DOI: 10.1101/2020.07.10.197731] [Reference Citation Analysis]
12 [DOI: 10.1101/2020.07.04.187468] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Reference Citation Analysis]