BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shen Y, Wei Y, Zhu C, Cao J, Han D. Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coordination Chemistry Reviews 2022;458:214442. [DOI: 10.1016/j.ccr.2022.214442] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Wu H, Chen Y, Xu M, Ling Y, Ju S, Tang Y, Tong C. Dual-response fluorescent probe based on nitrogen-doped carbon dots and europium ions hybrid for ratiometric and on-site visual determination of oxytetracycline and tetracycline. Sci Total Environ 2023;860:160533. [PMID: 36574552 DOI: 10.1016/j.scitotenv.2022.160533] [Reference Citation Analysis]
2 Li F, Zhe T, Ma K, Zhang Y, Li R, Cao Y, Li M, Wang L. One stone two birds: Multifunctional flavonol nanocrystals enable food packaging to both preserve freshness and visually monitor freshness. Chemical Engineering Journal 2023;453:139760. [DOI: 10.1016/j.cej.2022.139760] [Reference Citation Analysis]
3 Jie B, Lin H, Zhai Y, Ye J, Zhang D, Xie Y, Zhang X, Yang Y. Mechanism, design and application of fluorescent recognition based on metal organic frameworks in pollutant detection. Chemical Engineering Journal 2023;454:139931. [DOI: 10.1016/j.cej.2022.139931] [Reference Citation Analysis]
4 Shen Y, Wei Y, Gao X, Nie C, Wang J, Wu Y. Engineering an Enzymatic Cascade Catalytic Smartphone-Based Sensor for Onsite Visual Ratiometric Fluorescence-Colorimetric Dual-Mode Detection of Methyl Mercaptan. Environ Sci Technol 2023;57:1680-91. [PMID: 36642941 DOI: 10.1021/acs.est.2c07899] [Reference Citation Analysis]
5 Fan Y, Wang X, Huang H, Yang Y, Guo J, Luo S, Zhao M, Li Y. A visual ratiometric fluorescence sensor for glutathione response based on MnO(2) nanowires as an oxidant, quencher and recognition unit. Anal Methods 2023. [PMID: 36606523 DOI: 10.1039/d2ay01812h] [Reference Citation Analysis]
6 Ramírez-Coronel AA, Alameri AA, Altalbawy F, Sanaan Jabbar H, Lateef Al-Awsi GR, Iswanto AH, Altamimi AS, Shareef Mohsen K, Almulla AF, Mustafa YF. Smartphone-Facilitated Mobile Colorimetric Probes for Rapid Monitoring of Chemical Contaminations in Food: Advances and Outlook. Crit Rev Anal Chem 2023;:1-19. [PMID: 36598426 DOI: 10.1080/10408347.2022.2164173] [Reference Citation Analysis]
7 Xu Z, Zeng C, Zhao Y, Zhou M, Lv T, Song C, Qin T, Wang L, Liu B, Peng X. Smartphone-based on-site detection of hydrogen peroxide in milk by using a portable ratiometric fluorescent probe. Food Chem 2023;410:135381. [PMID: 36608547 DOI: 10.1016/j.foodchem.2022.135381] [Reference Citation Analysis]
8 de Castro CM, Olivi P, de Freitas Araújo KC, Barbosa Segundo ID, dos Santos EV, Martínez-huitle CA. Environmental application of a cost-effective smartphone-based method for COD analysis: Applicability in the electrochemical treatment of real wastewater. Science of The Total Environment 2023;855:158816. [DOI: 10.1016/j.scitotenv.2022.158816] [Reference Citation Analysis]
9 Wang S, Wang H, Yuan Z, Li M, Gao H, Shan L, Li A, Ding Y, Gu J, Zhu L, Yan T, Ye M, Ye J. Colorimetry Combined with Inner Filter Effect-Based Fluorometry: A Versatile and Robust Strategy for Multimode Visualization of Food Dyes. ACS Appl Mater Interfaces 2022;14:57251-64. [PMID: 36516434 DOI: 10.1021/acsami.2c17679] [Reference Citation Analysis]
10 Lin X, Luo J, Liao M, Su Y, Lv M, Li Q, Xiao S, Xiang J. Wearable Sensor-Based Monitoring of Environmental Exposures and the Associated Health Effects: A Review. Biosensors (Basel) 2022;12. [PMID: 36551098 DOI: 10.3390/bios12121131] [Reference Citation Analysis]
11 Yang H, Su X, Cai L, Sun Z, Lin Y, Yu J, Hao L, Liu C. Glutathione assisting the waste tobacco leaf to synthesize versatile biomass-based carbon dots for simultaneous detection and efficient removal of mercury ions. Journal of Environmental Chemical Engineering 2022;10:108718. [DOI: 10.1016/j.jece.2022.108718] [Reference Citation Analysis]
12 Umapathi R, Ghoreishian SM, Rani GM, Cho Y, Huh YS. Review—Emerging Trends in the Development of Electrochemical Devices for the On-Site Detection of Food Contaminants. ECS Sens Plus 2022;1:044601. [DOI: 10.1149/2754-2726/ac9d4a] [Reference Citation Analysis]
13 Xing G, Ai J, Wang N, Pu Q. Recent progress of smartphone-assisted microfluidic sensors for point of care testing. TrAC Trends in Analytical Chemistry 2022;157:116792. [DOI: 10.1016/j.trac.2022.116792] [Reference Citation Analysis]
14 Fang J, Li X, Pi D, Gao C, Gao S, Li W, Yan W, Zou H. A conjugated polymer-based ratiometric fluorescent probe for on-site quantitative detection of bisulfite in food samples by smartphone assay. Dyes and Pigments 2022;207:110750. [DOI: 10.1016/j.dyepig.2022.110750] [Reference Citation Analysis]
15 Wang Y, Jian J, Sun B, Wei Y, Pan D, Cao J, Shen Y. Engineering of onsite point-of-care testing of Fe3+ with visual ratiometric fluorescent signals of copper nanoclusters-driven portable smartphone. Sensors and Actuators B: Chemical 2022;370:132413. [DOI: 10.1016/j.snb.2022.132413] [Reference Citation Analysis]
16 Lu Z, Chen S, Chen M, Ma H, Wang T, Liu T, Yin J, Sun M, Wu C, Su G, Dai X, Wang X, Wang Y, Yin H, Zhou X, Shen Y, Rao H. Trichromatic ratiometric fluorescent sensor based on machine learning and smartphone for visual and portable monitoring of tetracycline antibiotics. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140492] [Reference Citation Analysis]
17 Gupta R, Rahi Alhachami F, Khalid I, Majdi HS, Nisar N, Mohamed Hasan Y, Sivaraman R, Romero Parra RM, Al Mashhadani ZI, Fakri Mustafa Y. Recent Progress in Aptamer-Functionalized Metal-Organic Frameworks-Based Optical and Electrochemical Sensors for Detection of Mycotoxins. Crit Rev Anal Chem 2022;:1-22. [PMID: 36197710 DOI: 10.1080/10408347.2022.2128634] [Reference Citation Analysis]
18 Liang M, Lin B, Tang Z, Zhang L, Guo M, Cao Y, Wang Y, Yu Y. A Facile, Label-free and Versatile Fluorescence Sensing Nanoplatform Based on Titanium Carbide Nanosheets for the Detection of Various Targets. J Fluoresc. [DOI: 10.1007/s10895-022-03012-2] [Reference Citation Analysis]
19 Shen Y, Nie C, Zhu C, Zheng Z, Wu Y. Aggregation-Induced Emission Fluorophore-Incorporated Curcumin-Based Ratiometric Nanoprobe for Hypochlorite Detection in Food Matrices. J Agric Food Chem 2022. [PMID: 35876793 DOI: 10.1021/acs.jafc.2c03826] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Li Y, Zhou H, Zhang J, Cui B, Fang Y. Determination of nitrite in food based on its sensitizing effect on cathodic electrochemiluminescence of conductive PTH-DPP films. Food Chem 2022;397:133760. [PMID: 35907391 DOI: 10.1016/j.foodchem.2022.133760] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Solanki R, Patra I, Kumar TCA, Kumar NB, Kandeel M, Sivaraman R, Turki Jalil A, Yasin G, Sharma S, Abdulameer Marhoon H. Smartphone-Based Techniques Using Carbon Dot Nanomaterials for Food Safety Analysis. Crit Rev Anal Chem 2022;:1-19. [PMID: 35857650 DOI: 10.1080/10408347.2022.2099733] [Reference Citation Analysis]
22 Shen Y, Zhu C, Wei Y, Chen H, Wu Z, Ye Y, Han DM. Engineering of Portable Smartphone Integrated with Liposome-Encapsulated Curcumin for Onsite Visual Ratiometric Fluorescence Imaging of Hypochlorite. Chemistry 2022;28:e202200263. [PMID: 35233854 DOI: 10.1002/chem.202200263] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]