1 |
Pan W, Han L, Cao X, Shen S, Pang X, Zhu Y. Dual-response near-infrared fluorescent probe for detecting cyanide and mitochondrial viscosity and its application in bioimaging. Food Chem 2023;407:135163. [PMID: 36502726 DOI: 10.1016/j.foodchem.2022.135163] [Reference Citation Analysis]
|
2 |
Xu L, Xu W, Tian Z, Deng F, Huang Y. Sustainable natural chlorogenic acid as a functional molecular sensor toward viscosity detection in liquids. Photochem Photobiol Sci 2023. [PMID: 36694012 DOI: 10.1007/s43630-023-00365-w] [Reference Citation Analysis]
|
3 |
Ma Y, Wang X, Wang Z, Zhang G, Chen X, Zhang Y, Luo Y, Gao G, Zhou X. A water-soluble NIR fluorescent probe capable of rapid response and selective detection of hydrogen sulfide in food samples and living cells. Talanta 2023;256:124303. [PMID: 36724692 DOI: 10.1016/j.talanta.2023.124303] [Reference Citation Analysis]
|
4 |
Zhang C, Zhang X, Shen Y, Zhou Z. A mitochondrion targetable dimethylphosphorothionate-based far-red and colorimetric fluorescent probe with large Stokes shift for monitoring peroxynitrite in living cells. Anal Methods 2023;15:196-202. [PMID: 36515437 DOI: 10.1039/d2ay01614a] [Reference Citation Analysis]
|
5 |
Gao Y, Song G, Shi G, Xiao J, Yuan C, Ge Y. Simple and Commercially Available 6-chloroimidazo[1,2-a]pyridine-2-carboxylic Acid-based Fluorescent Probe for Monitoring pH Changes. J Fluoresc 2023;33:305-9. [PMID: 36414919 DOI: 10.1007/s10895-022-03086-y] [Reference Citation Analysis]
|
6 |
Liu Y, Zhou S, Jin W, Niu J, Wang K, Liu Z, Yu X. Engineering Hydrophilic/Hydrophobic Moieties of Ratiometric Fluorescence Probe to Visualize Whole Cytoplasmic Polarity. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141651] [Reference Citation Analysis]
|
7 |
Zhang W, Xun Q, Xing W, Xu F, Liu X. A highly selective fluorescent probe for imaging hydrogen sulfide in living HeLa cells.. [DOI: 10.21203/rs.3.rs-2417883/v1] [Reference Citation Analysis]
|
8 |
Liu Y, Feng S, Gong S, Feng G. Dual-Channel Fluorescent Probe for Detecting Viscosity and ONOO(-) without Signal Crosstalk in Nonalcoholic Fatty Liver. Anal Chem 2022;94:17439-47. [PMID: 36475623 DOI: 10.1021/acs.analchem.2c03419] [Reference Citation Analysis]
|
9 |
Liu Q, Dong C, Zhang J, Zhao B, Zhou Y, Fan C, Lu Z. A mitochondria-targeted ratiometric NIR fluorescent probe for simultaneously monitoring viscosity and ONOO− based on two different channels in living HepG2 cells. Dyes and Pigments 2022. [DOI: 10.1016/j.dyepig.2022.111045] [Reference Citation Analysis]
|
10 |
Yang J, Duan L, Zhou Y, Wu T, Shi J, Zhou Y. An effective NIR fluorescent molecular tool to monitor cancer cell migration derived from inhibiting autophagy-induced cellular inflammation. Dyes and Pigments 2022;208:110846. [DOI: 10.1016/j.dyepig.2022.110846] [Reference Citation Analysis]
|
11 |
Zhang L, Zhang L, Zhang X, Liu P, Wang Y, Han X, Chen L. Fluorescent imaging to provide visualized evidences for mercury induced hypoxia stress. Journal of Hazardous Materials 2022. [DOI: 10.1016/j.jhazmat.2022.130374] [Reference Citation Analysis]
|
12 |
Zhan J, Geng C, Hao X, Song W, Li Z, Lin W. A pH-correctable, viscosity-susceptible fluorescent reporter for organellar sulfur dioxide. Sensors and Actuators B: Chemical 2022;371:132506. [DOI: 10.1016/j.snb.2022.132506] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
13 |
Tang Y, Peng J, Zhang Q, Song S, Lin W. A new NIR emission mitochondrial targetable fluorescent probe and its application in detecting viscosity changes in mouse liver and kidney injury. Talanta 2022;249:123647. [DOI: 10.1016/j.talanta.2022.123647] [Reference Citation Analysis]
|
14 |
Li J, Tian M, Yu F, Zhang J, Zheng G, Yan M. Rational design of a symmetric double rotor-based fluorescent probe for revealing LDs viscosity changes during ferroptosis. Dyes and Pigments 2022;207:110779. [DOI: 10.1016/j.dyepig.2022.110779] [Reference Citation Analysis]
|
15 |
Shi WJ, Chen R, Yang J, Wei YF, Guo Y, Wang ZZ, Yan JW, Niu L. Novel Meso-Benzothiazole-Substituted BODIPY-Based AIE Fluorescent Rotor for Imaging Lysosomal Viscosity and Monitoring Autophagy. Anal Chem 2022. [PMID: 36222313 DOI: 10.1021/acs.analchem.2c03094] [Reference Citation Analysis]
|
16 |
Guan X, Hong J, Li Q, Feng G. High-fidelity imaging probe for lysosomes and selective visualization of cancer cells and tissues. Sensors and Actuators B: Chemical 2022;369:132325. [DOI: 10.1016/j.snb.2022.132325] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
17 |
Dhiman S, Kour R, Kaur S, Singh P, Kumar S. Mitochondria targeted dual-fluorescent probe for bio-imaging viscosity and F- with different fluorescence signals. Bioorg Chem 2022;129:106169. [PMID: 36174442 DOI: 10.1016/j.bioorg.2022.106169] [Reference Citation Analysis]
|
18 |
Tantipanjaporn A, Kung KK, Chan W, Deng J, Ko BC, Wong M. Quinolinium-based viscosity probes for lysosome imaging and tracing lysosomal viscosity changes in living cells. Sensors and Actuators B: Chemical 2022;367:132003. [DOI: 10.1016/j.snb.2022.132003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
19 |
Yu FT, Huang Z, Yang JX, Yang LM, Xu XY, Huang JY, Kong L. Two quinoline-based two-photon fluorescent probes for imaging of viscosity in subcellular organelles of living HeLa cells. Spectrochim Acta A Mol Biomol Spectrosc 2022;283:121769. [PMID: 36007347 DOI: 10.1016/j.saa.2022.121769] [Reference Citation Analysis]
|
20 |
Kang X, Li Y, Yin S, Li W, Qi J. Reactive Species-Activatable AIEgens for Biomedical Applications. Biosensors 2022;12:646. [DOI: 10.3390/bios12080646] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
21 |
Xie P, Liu J, Yang X, Zhu W, Ye Y. A bifunctional fluorescent probe for imaging lipid droplets polarity/SO2 during ferroptosis. Sensors and Actuators B: Chemical 2022;365:131937. [DOI: 10.1016/j.snb.2022.131937] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
|
22 |
Jia T, Li Y, Niu H. Recent Progress in Fluorescent Probes for Diabetes Visualization and Drug Therapy. Chemosensors 2022;10:280. [DOI: 10.3390/chemosensors10070280] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
|
23 |
Tan L, Fan Q, Huang F, Tian X, Wei W, Bian T, Guo Y, Xu X, Zhou Z. Excited-state geometry relaxation of pyrene-modified cellulose nanocrystals under UV-light excitation for detecting Fe 3+. Nanotechnology Reviews 2022;11:2526-34. [DOI: 10.1515/ntrev-2022-0141] [Reference Citation Analysis]
|
24 |
Wang H, Yang T, Ni S, Xie Z, Chang G. A "Turn-On" fluorescent probe for detection and removal of Zn2+ in aqueous and its application in living cells. Spectrochim Acta A Mol Biomol Spectrosc 2022;280:121501. [PMID: 35749973 DOI: 10.1016/j.saa.2022.121501] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
25 |
Zhang Y, Qiu X, Sun L, Yan Q, Luck RL, Liu H. A two-photon fluorogenic probe based on a coumarin schiff base for formaldehyde detection in living cells. Spectrochim Acta A Mol Biomol Spectrosc 2022;274:121074. [PMID: 35257990 DOI: 10.1016/j.saa.2022.121074] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
26 |
Liu C, Yin J, Lu B, Lin W. Exploring of blood viscosity in injured liver tissues of hyperlipidemic mice. Dyes and Pigments 2022;202:110272. [DOI: 10.1016/j.dyepig.2022.110272] [Reference Citation Analysis]
|
27 |
Xu C, Li Y, Wu X, Li X, Li L, Kong F, Tang B. A dual-responsive probe for the simultaneous monitoring of viscosity and peroxynitrite with different fluorescence signals in living cells. Chem Commun (Camb) 2022;58:5976-9. [PMID: 35481600 DOI: 10.1039/d2cc01607a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
28 |
Guo J, Fang B, Bai H, Wang L, Peng B, Qin X, Fu L, Yao C, Li L, Huang W. Dual/Multi-responsive fluorogenic probes for multiple analytes in mitochondria: From design to applications. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116697] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
29 |
Han Y, Li X, Li D, Chen C, Zhang QW, Tian Y. Selective, Rapid, and Ratiometric Fluorescence Sensing of Homocysteine in Live Neurons via a Reaction-Kinetics/Sequence-Differentiation Strategy Based on a Small Molecular Probe. ACS Sens 2022;7:1036-44. [PMID: 35316602 DOI: 10.1021/acssensors.1c02684] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
30 |
Yin J, Xu Q, Mo X, Dai L, Ren M, Wang S, Kong F. Construction of a novel mitochondria-targeted near-infrared (NIR) probe for detection of viscosity changes in cancer cells ferroptosis process. Dyes and Pigments 2022;200:110184. [DOI: 10.1016/j.dyepig.2022.110184] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
31 |
Xu L, Xiong F, Kang M, Huang Y, Wu K. Triphenylamine indanedione as an AIE-based molecular sensor with one-step facile synthesis toward viscosity detection of liquids. Analyst 2022;147:4132-4140. [DOI: 10.1039/d2an00850e] [Reference Citation Analysis]
|
32 |
Liu K, Fan L, Huang S, Sun J, Wang X, Li H, Si C, Zhang W, Li T, Yang Z. A benzocoumarin-based fluorescent probe for ultra-sensitive and fast detection of endogenous/exogenous hypochlorous acid and its applications. Analyst 2022;147:1976-1985. [DOI: 10.1039/d1an02178h] [Reference Citation Analysis]
|
33 |
Li J, He R, Duan S, Li J, Han X, Ye Y. Construction and Cell Imaging Study of a Novel Fluorescent Probe for ONOO – Detection. Chinese Journal of Organic Chemistry 2022;42:2428. [DOI: 10.6023/cjoc202203023] [Reference Citation Analysis]
|