BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ma S, Chen G, Xu J, Liu Y, Li G, Chen T, Li Y, James TD. Current strategies for the development of fluorescence-based molecular probes for visualizing the enzymes and proteins associated with Alzheimer’s disease. Coordination Chemistry Reviews 2021;427:213553. [DOI: 10.1016/j.ccr.2020.213553] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang H, Luo J, Qiao Z, An B, Wei N, Zhang Y. An activatable fluorescence probe for visualization of DAGL activity in hippocampal tissue of brain-injured mice. Sensors and Actuators B: Chemical 2022;367:132047. [DOI: 10.1016/j.snb.2022.132047] [Reference Citation Analysis]
2 Liu XY, Wang XJ, Shi L, Liu YH, Wang L, Li K, Bu Q, Cen XB, Yu XQ. Rational Design of Quinoxalinone-Based Red-Emitting Probes for High-Affinity and Long-Term Visualizing Amyloid-β In Vivo. Anal Chem 2022. [PMID: 35578920 DOI: 10.1021/acs.analchem.2c01046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Yao Y, Li W, Han Q, Lv G, Li C, Sun A. A Pyridyl Zn (II) Chelate for the Fluorescent Detection of Aβ Fibrils. Zeitschrift anorg allge chemie. [DOI: 10.1002/zaac.202200070] [Reference Citation Analysis]
4 Su D, Diao W, Li J, Pan L, Zhang X, Wu X, Mao W. Strategic Design of Amyloid-β Species Fluorescent Probes for Alzheimer's Disease. ACS Chem Neurosci 2022;13:540-51. [PMID: 35132849 DOI: 10.1021/acschemneuro.1c00810] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Gai F, Guo X, Ding G, Zhang K, Zhang Y, Zuo Y. Turn-on silicon-based fluorescent probe for visualizing endogenous CO during hypoxia. New J Chem 2022;46:10213-8. [DOI: 10.1039/d2nj01696f] [Reference Citation Analysis]
6 Liu J, Yin H, Shang Z, Gu P, He G, Meng Q, Zhang R, Zhang Z. Sequential detection of hypochlorous acid and sulfur dioxide derivatives by a red-emitting fluorescent probe and bioimaging applications in vitro and in vivo. RSC Adv 2022;12:15861-9. [DOI: 10.1039/d2ra01048h] [Reference Citation Analysis]
7 Shao C, Liu Y, Chen Z, Qin Y, Wang X, Wang X, Yan C, Zhu HL, Zhao J, Qian Y. 3D two-photon brain imaging reveals dihydroartemisinin exerts antiepileptic effects by modulating iron homeostasis. Cell Chem Biol 2021:S2451-9456(21)00520-1. [PMID: 34936859 DOI: 10.1016/j.chembiol.2021.12.006] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Liu C, Li Y, Luo Y, Zhang Y, Zhou T, Deng J. Lab-on-a-ZnO-Submicron-Particle Sensor Array for Monitoring AD upon Cd2+ Exposure with CSF Tau441% as an Effective Hallmark. Anal Chem 2021;93:15005-14. [PMID: 34738809 DOI: 10.1021/acs.analchem.1c02570] [Reference Citation Analysis]
9 Xue J, Liu Y, Li L, Xu J, Chen T, Li Y, Chen G. Visualizing the hypoxic heterogeneity for distinguishing the cancer tissues with a two-photon nitroreductase-H2S logic probe via intramolecular isomerization. Sensors and Actuators B: Chemical 2021;347:130647. [DOI: 10.1016/j.snb.2021.130647] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
10 Yu Q, Liao J, Xu F, Yuan X, Xiong X, Xiao T, Yu H, Huang K. Developments of spectroscopic biosensors for cholinesterase and its inhibitors in the last decade: an overview. Applied Spectroscopy Reviews. [DOI: 10.1080/05704928.2021.1990080] [Reference Citation Analysis]
11 Liu Y, Zhang Y, Zhang X, Zhang W, Wang X, Sun Y, Ma P, Huang Y, Song D. Near-infrared fluorescent probe based on Ag&Mn:ZnInS QDs for tyrosinase activity detection and inhibitor screening. Sensors and Actuators B: Chemical 2021;344:130234. [DOI: 10.1016/j.snb.2021.130234] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
12 Ma L, Yang S, Ma Y, Chen Y, Wang Z, James TD, Wang X, Wang Z. Benzothiazolium Derivative-Capped Silica Nanocomposites for β-Amyloid Imaging In Vivo. Anal Chem 2021;93:12617-27. [PMID: 34494815 DOI: 10.1021/acs.analchem.1c02289] [Reference Citation Analysis]
13 Yan K, Steinbrueck A, Sedgwick AC, James TD. Fluorescent Chemosensors for Ion and Molecule Recognition: The Next Chapter. Front Sens 2021;2:731928. [DOI: 10.3389/fsens.2021.731928] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Fang B, Li P, Jiang J, Du W, Wang L, Bai H, Peng B, Huang X, An Z, Li L, Yang X, Fu L, Huang W. Confinement fluorescence effect (CFE): Lighting up life by enhancing the absorbed photon energy utilization efficiency of fluorophores. Coordination Chemistry Reviews 2021;440:213979. [DOI: 10.1016/j.ccr.2021.213979] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
15 Liu Y, Xiao M, Zhao J, Zhang X, Hu X, Goff HD, Guo Q. Fluorescent labeling affected the structural/conformational properties of arabinoxylans. Carbohydrate Polymers 2021;265:118064. [DOI: 10.1016/j.carbpol.2021.118064] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Han HH, Tian H, Zang Y, Sedgwick AC, Li J, Sessler JL, He XP, James TD. Small-molecule fluorescence-based probes for interrogating major organ diseases. Chem Soc Rev 2021;50:9391-429. [PMID: 34232230 DOI: 10.1039/d0cs01183e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Yang J, Kou Y. Sulfo-modified MIL-101 with immobilized carbon quantum dots as a fluorescence sensing platform for highly sensitive detection of DNP. Inorganica Chimica Acta 2021;519:120276. [DOI: 10.1016/j.ica.2021.120276] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Liu T, Tian M, Wang J, Tian X, Liu J, Feng L, Ma X, Cui J. Rational design of a fluorescent probe for the detection of LAP and its application in drug-induced liver injury. Spectrochim Acta A Mol Biomol Spectrosc 2021;251:119362. [PMID: 33486435 DOI: 10.1016/j.saa.2020.119362] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
19 Jiang W, Wang W, Mao G, Yan L, Du Y, Li Y, Li C. Construction of NIR and Ratiometric Fluorescent Probe for Monitoring Carbon Monoxide under Oxidative Stress in Zebrafish. Anal Chem 2021;93:2510-8. [DOI: 10.1021/acs.analchem.0c04537] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
20 Song Q, Zhou B, Zhang D, Chi H, Jia H, Zhu P, Zhang Z, Meng Q, Zhang R. A reversible near-infrared fluorescence probe for the monitoring of HSO 3 /H 2 O 2 -regulated cycles in vivo. New J Chem 2021;45:19011-8. [DOI: 10.1039/d1nj03507j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Luo J, Zhang H, Guan J, An B, Peng J, Zhu W, Wei N, Zhang Y. Detection of lipase activity in human serum based on a ratiometric fluorescent probe. New J Chem 2021;45:9561-8. [DOI: 10.1039/d1nj01155c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Qi YL, Guo L, Chen LL, Yuan DD, Wang HR, Cao YY, Yang YS, Zhu HL. Two birds with one stone: a NIR fluorescent probe for mitochondrial protein imaging and its application in photodynamic therapy. J Mater Chem B 2021;9:6068-75. [PMID: 34286809 DOI: 10.1039/d1tb00881a] [Reference Citation Analysis]