BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhou Y, Yin H, Zhao W, Ai S. Electrochemical, electrochemiluminescent and photoelectrochemical bioanalysis of epigenetic modifiers: A comprehensive review. Coordination Chemistry Reviews 2020;424:213519. [DOI: 10.1016/j.ccr.2020.213519] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 9.5] [Reference Citation Analysis]
Number Citing Articles
1 Mendes CH, Silva MW, Oliveira SCB. Voltammetric determination of 5-methylcytosine at glassy carbon electrode. Journal of Electroanalytical Chemistry 2021;895:115437. [DOI: 10.1016/j.jelechem.2021.115437] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Chang Y, Ma X, Sun T, Liu L, Hao Y. Electrochemical detection of kinase by converting homogeneous analysis into heterogeneous assay through avidin-biotin interaction. Talanta 2021;234:122649. [PMID: 34364458 DOI: 10.1016/j.talanta.2021.122649] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Wang Q, Yin H, Zhou Y, Cao L, Yu Z, Xu Y, Ai S. Photoelectrochemical Biosensor for 5‐Formylcytosine Based on WS 2 /Bi/ Bi 2 O 2 CO 3 Nanocomposite and Rolling Circle Amplification. Chin J Chem 2022;40:247-55. [DOI: 10.1002/cjoc.202100667] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Li C, Shen J, Wu K, Yang N. Metal Centers and Organic Ligands Determine Electrochemistry of Metal-Organic Frameworks. Small 2022;18:e2106607. [PMID: 34994066 DOI: 10.1002/smll.202106607] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Wang Q, Yin H, Ding J, Fang X, Zhou Y, Ai S. Enhanced photoactivity of ZnPc@WS2 heterojunction by CuBi2O4 and its application for photoelectrochemical detection of 5-formyl-2'-deoxycytidine. Talanta 2021;234:122697. [PMID: 34364493 DOI: 10.1016/j.talanta.2021.122697] [Reference Citation Analysis]
6 Zheng Y, Zhou Y, Cui X, Yin H, Ai S. Enhanced photoactivity of CdS nanorods by MXene and ZnSnO3: Application in photoelectrochemical biosensor for the effect of environmental pollutants on DNA hydroxymethylation in wheat tissues. Materials Today Chemistry 2022;24:100878. [DOI: 10.1016/j.mtchem.2022.100878] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Zhou Y, Yin H, Ai S. Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coordination Chemistry Reviews 2021;447:214156. [DOI: 10.1016/j.ccr.2021.214156] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 18.0] [Reference Citation Analysis]
8 Lai W, Li J, Jiang M, Ma C, Zhao C, Wang M, Li P, Yan S, Qi Y, Hong C. An electrochemiluminescence immunosensor based on Ag-Ti3C2 MXene and CNNVs with multiple signal amplification strategies. Bioelectrochemistry 2022;146:108131. [DOI: 10.1016/j.bioelechem.2022.108131] [Reference Citation Analysis]
9 Shaban SM, Byeok Jo S, Hafez E, Ho Cho J, Kim D. A comprehensive overview on alkaline phosphatase targeting and reporting assays. Coordination Chemistry Reviews 2022;465:214567. [DOI: 10.1016/j.ccr.2022.214567] [Reference Citation Analysis]
10 Song J, Teng H, Xu Z, Liu N, Xu L, Liu L, Gao F, Luo X. Free-standing electrochemical biosensor for carcinoembryonic antigen detection based on highly stable and flexible conducting polypyrrole nanocomposite. Mikrochim Acta 2021;188:217. [PMID: 34057597 DOI: 10.1007/s00604-021-04859-1] [Reference Citation Analysis]
11 Wang Q, Yin H, Ding J, Zhou Y, Ai S. WS 2 /Bi/BiOBr Nanostructures for Photoelectrochemical Sensing of 5-Formyluracil-2′-deoxyuridine-5′-triphosphate through Hemin/G-Quadruplex Double Signal Amplification. ACS Appl Nano Mater 2021;4:8998-9007. [DOI: 10.1021/acsanm.1c01585] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Xu J, Li Y, Gong H, Yu Z, Zhang J, Wei Q, Tang D. Au Nanoparticle-Decorated ZnO Microflower-Based Immunoassay for Photoelectrochemical Detection of Human Prostate-Specific Antigen. ACS Appl Nano Mater 2021;4:10943-51. [DOI: 10.1021/acsanm.1c02397] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
13 Ai L, Wang Y, Zhou Y, Yin H. Photoelectrochemical biosensor for N6-methyladenosine detection based on enhanced photoactivity of TiO2-X and MoS2 nanocomposite. Journal of Electroanalytical Chemistry 2021;895:115444. [DOI: 10.1016/j.jelechem.2021.115444] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Khoshfetrat SM, Seyed Dorraji P, Shayan M, Khatami F, Omidfar K. Smartphone-Based Electrochemiluminescence for Visual Simultaneous Detection of RASSF1A and SLC5A8 Tumor Suppressor Gene Methylation in Thyroid Cancer Patient Plasma. Anal Chem 2022. [PMID: 35616262 DOI: 10.1021/acs.analchem.2c01132] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Chen Y, Zhou Y, Yin H. Recent advances in biosensor for histone acetyltransferase detection. Biosensors and Bioelectronics 2021;175:112880. [DOI: 10.1016/j.bios.2020.112880] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Wang X, Wang X, Hu C, Guo W, Wu X, Chen G, Dai W, Zhen S, Huang C, Li Y. Controlled synthesis of zinc-metal organic framework microflower with high efficiency electrochemiluminescence for miR-21 detection. Biosensors and Bioelectronics 2022;213:114443. [DOI: 10.1016/j.bios.2022.114443] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Liu T, Gu M, Dong Y, Wang GL. Methylene blue embedded duplex DNA as an efficient signal stimulator of petal-like BiVO4 for ultrasensitive photoelectrochemical bioassay. Anal Chim Acta 2021;1182:338945. [PMID: 34602198 DOI: 10.1016/j.aca.2021.338945] [Reference Citation Analysis]
18 Liu X, Zhao S, Tan L, Tan Y, Wang Y, Ye Z, Hou C, Xu Y, Liu S, Wang G. Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis. Biosensors and Bioelectronics 2022;201:113932. [DOI: 10.1016/j.bios.2021.113932] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Yu Z, Huang L, Chen J, Li M, Tang D. Graded oxygen-doped CdS electrode for portable photoelectrochemical immunoassay of alpha-fetoprotein coupling with a digital multimeter readout. Sensors and Actuators B: Chemical 2021;343:130136. [DOI: 10.1016/j.snb.2021.130136] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
20 Yang H, Ren J, Zhao M, Chen C, Wang F, Chen Z. Novel electrochemical immunosensor for O6-methylguanine-DNA methyltransferase gene methylation based on graphene oxide-magnetic nanoparticles-β-cyclodextrin nanocomposite. Bioelectrochemistry 2022. [DOI: 10.1016/j.bioelechem.2022.108111] [Reference Citation Analysis]
21 Ding J, Zhou Y, Wang Q, Ai S. Photoelectrochemical biosensor for DNA hydroxymethylation detection based on the enhanced photoactivity of in-situ synthesized Bi4NbO8Cl@Bi2S3 heterojunction. Biosens Bioelectron 2021;194:113580. [PMID: 34454344 DOI: 10.1016/j.bios.2021.113580] [Reference Citation Analysis]
22 Wang Q, Yin H, Zhou Y, Wang J, Ai S. Investigation of the inhibited biotoxicity of heavy metals towards 5- formylcytosine in rice by hydrochar based on photoelectrochemical biosensor. Journal of Hazardous Materials 2021;414:125293. [DOI: 10.1016/j.jhazmat.2021.125293] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
23 Xia N, Sun T, Liu L, Tian L, Sun Z. Heterogeneous sensing of post-translational modification enzymes by integrating the advantage of homogeneous analysis. Talanta 2022;237:122949. [PMID: 34736675 DOI: 10.1016/j.talanta.2021.122949] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
24 Liu Y, Deng Y, Li S, Wang-ngai Chow F, Liu M, He N. Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends in Food Science & Technology 2022;125:200-35. [DOI: 10.1016/j.tifs.2022.04.008] [Reference Citation Analysis]
25 Wang Q, Yin H, Zhou Y, Wang J, Ai S. Photoelectrochemical biosensor for 5-formylcytosine deoxyribonucleoside detection based on BiIO4-WS2/CuO ternary heterojunction. Sensors and Actuators B: Chemical 2021;341:130019. [DOI: 10.1016/j.snb.2021.130019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
26 Zheng Y, Zhou Y, Cui X, Yan H, Cao L, Gao L, Yin H. Investigation of the effect of antibiotics on 5-formylcytosine content in mazie seedling tissues based on photoelectrochemical biosensor. J Hazard Mater 2022;436:129146. [PMID: 35594676 DOI: 10.1016/j.jhazmat.2022.129146] [Reference Citation Analysis]
27 Wu X, Ma P, Sun Y, Du F, Song D, Xu G. Application of MXene in Electrochemical Sensors: A Review. Electroanalysis 2021;33:1827-51. [DOI: 10.1002/elan.202100192] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
28 Luo J, Zeng Q, Liu S, Wei Q, Wang Z, Yang M, Zou Y, Lu L. Highly sensitive photoelectrochemical sensing platform based on PM6:Y6 p-n heterojunction for detection of MCF-7 cells. Sensors and Actuators B: Chemical 2022;363:131814. [DOI: 10.1016/j.snb.2022.131814] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Zheng Y, Fang X, Zhou Y, Cui X, Cao L, Gao L, Yin H, Wang J, Ai S. Enhanced photoactivity of Bi2S3 nanoflowers by CS-AgBr and CeO2: Application in photoelectrochemical biosensor for the effect of antibiotics on N6-methyladenosine in rice tissues. Journal of Electroanalytical Chemistry 2022;920:116640. [DOI: 10.1016/j.jelechem.2022.116640] [Reference Citation Analysis]
30 Ying Y, Zhou M, Dai S, Ma M, Deng W, Tan Y, Xie Q. Au nanoparticles/SnO2/ZnIn2S4-based biosensor for photoelectrochemical/electrochemical dual-signal detection of RNase A by combining the enzymolysis of DNA probe and the generation of molybdophosphate precipitate. Sensors and Actuators B: Chemical 2022;354:131251. [DOI: 10.1016/j.snb.2021.131251] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Liu Y, Li B, Zhang H, Liu Y, Xie P. Participation of fluorescence technology in the cross-disciplinary detection of microcystins. Coordination Chemistry Reviews 2022;457:214416. [DOI: 10.1016/j.ccr.2022.214416] [Reference Citation Analysis]
32 Zhao Y, Li L, Yan X, Wang L, Ma R, Qi X, Wang S, Mao X. Emerging roles of the aptasensors as superior bioaffinity sensors for monitoring shellfish toxins in marine food chain. J Hazard Mater 2021;421:126690. [PMID: 34315019 DOI: 10.1016/j.jhazmat.2021.126690] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
33 Ding J, Liu F, Qi C, Zhou Y, Yin H, Ai S. Enhanced photoactivity of perovskite Bi4NbO8Cl/PTC-NH2 heterojunction and its application for photoelectrochemical sensing of DNA hydroxymethylation. Sensors and Actuators B: Chemical 2021;344:130211. [DOI: 10.1016/j.snb.2021.130211] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
34 Cui L, Shen J, Li CC, Cui PP, Luo X, Wang X, Zhang CY. Construction of a Dye-Sensitized and Gold Plasmon-Enhanced Cathodic Photoelectrochemical Biosensor for Methyltransferase Activity Assay. Anal Chem 2021;93:10310-6. [PMID: 34260216 DOI: 10.1021/acs.analchem.1c01797] [Reference Citation Analysis]