BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shukla SK, Purohit V, Mehla K, Gunda V, Chaika NV, Vernucci E, King RJ, Abrego J, Goode GD, Dasgupta A, Illies AL, Gebregiworgis T, Dai B, Augustine JJ, Murthy D, Attri KS, Mashadova O, Grandgenett PM, Powers R, Ly QP, Lazenby AJ, Grem JL, Yu F, Matés JM, Asara JM, Kim JW, Hankins JH, Weekes C, Hollingsworth MA, Serkova NJ, Sasson AR, Fleming JB, Oliveto JM, Lyssiotis CA, Cantley LC, Berim L, Singh PK. MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell 2017;32:392. [PMID: 28898700 DOI: 10.1016/j.ccell.2017.08.008] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Pecoraro C, Faggion B, Balboni B, Carbone D, Peters GJ, Diana P, Assaraf YG, Giovannetti E. GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer. Drug Resist Updat 2021;58:100779. [PMID: 34461526 DOI: 10.1016/j.drup.2021.100779] [Reference Citation Analysis]
2 Huang TQ, Bi YN, Cui Z, Guan JP, Huang YC. MUC1 confers radioresistance in head and neck squamous cell carcinoma (HNSCC) cells. Bioengineered 2020;11:769-78. [PMID: 32662743 DOI: 10.1080/21655979.2020.1791590] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Yamada KJ, Heim CE, Xi X, Attri KS, Wang D, Zhang W, Singh PK, Bronich TK, Kielian T. Monocyte metabolic reprogramming promotes pro-inflammatory activity and Staphylococcus aureus biofilm clearance. PLoS Pathog 2020;16:e1008354. [PMID: 32142554 DOI: 10.1371/journal.ppat.1008354] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 18.0] [Reference Citation Analysis]
4 Sharma N, Bhushan A, He J, Kaushal G, Bhardwaj V. Metabolic plasticity imparts erlotinib-resistance in pancreatic cancer by upregulating glucose-6-phosphate dehydrogenase. Cancer Metab 2020;8:19. [PMID: 32974013 DOI: 10.1186/s40170-020-00226-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
5 Knowles HJ. Distinct roles for the hypoxia-inducible transcription factors HIF-1α and HIF-2α in human osteoclast formation and function. Sci Rep 2020;10:21072. [PMID: 33273561 DOI: 10.1038/s41598-020-78003-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Wang S, Guan G, Zou C, Guo Q, Cheng W, Shen S, Dong F, Wu A, Li G, Zhu C. Genome profiling of mismatch repair genes in eight types of tumors. Cell Cycle 2021;20:1091-106. [PMID: 33966609 DOI: 10.1080/15384101.2021.1922160] [Reference Citation Analysis]
7 Yoo HC, Yu YC, Sung Y, Han JM. Glutamine reliance in cell metabolism. Exp Mol Med 2020;52:1496-516. [PMID: 32943735 DOI: 10.1038/s12276-020-00504-8] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 22.0] [Reference Citation Analysis]
8 Li T, Li X, Attri KS, Liu C, Li L, Herring LE, Asara JM, Lei YL, Singh PK, Gao C, Wen H. O-GlcNAc Transferase Links Glucose Metabolism to MAVS-Mediated Antiviral Innate Immunity. Cell Host Microbe 2018;24:791-803.e6. [PMID: 30543776 DOI: 10.1016/j.chom.2018.11.001] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 19.5] [Reference Citation Analysis]
9 De Santis MC, Porporato PE, Martini M, Morandi A. Signaling Pathways Regulating Redox Balance in Cancer Metabolism. Front Oncol 2018;8:126. [PMID: 29740540 DOI: 10.3389/fonc.2018.00126] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 11.3] [Reference Citation Analysis]
10 Qin RF, Zhang J, Huo HR, Yuan ZJ, Xue JD. MiR-205 mediated APC regulation contributes to pancreatic cancer cell proliferation. World J Gastroenterol 2019; 25(28): 3775-3786 [PMID: 31391772 DOI: 10.3748/wjg.v25.i28.3775] [Cited by in CrossRef: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
11 Smigiel JM, Parameswaran N, Jackson MW. Targeting Pancreatic Cancer Cell Plasticity: The Latest in Therapeutics. Cancers (Basel) 2018;10:E14. [PMID: 29320425 DOI: 10.3390/cancers10010014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
12 Ricciardiello F, Gang Y, Palorini R, Li Q, Giampà M, Zhao F, You L, La Ferla B, De Vitto H, Guan W, Gu J, Zhang T, Zhao Y, Chiaradonna F. Hexosamine pathway inhibition overcomes pancreatic cancer resistance to gemcitabine through unfolded protein response and EGFR-Akt pathway modulation. Oncogene 2020;39:4103-17. [PMID: 32235891 DOI: 10.1038/s41388-020-1260-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 13.0] [Reference Citation Analysis]
13 Sun Z, Liu JL. Forming cytoophidia prolongs the half-life of CTP synthase. Cell Discov 2019;5:32. [PMID: 31240110 DOI: 10.1038/s41421-019-0098-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
14 Fu X, Tang N, Xie WQ, Mao L, Qiu YD. MUC1 promotes glycolysis through inhibiting BRCA1 expression in pancreatic cancer. Chin J Nat Med 2020;18:178-85. [PMID: 32245587 DOI: 10.1016/S1875-5364(20)30019-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Bousseau S, Vergori L, Soleti R, Lenaers G, Martinez MC, Andriantsitohaina R. Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis. Pharmacology & Therapeutics 2018;191:92-122. [DOI: 10.1016/j.pharmthera.2018.06.003] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
16 Chen X, Zeh HJ, Kang R, Kroemer G, Tang D. Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol 2021. [PMID: 34331036 DOI: 10.1038/s41575-021-00486-6] [Reference Citation Analysis]
17 Wallez Y, Dunlop CR, Johnson TI, Koh SB, Fornari C, Yates JWT, Bernaldo de Quirós Fernández S, Lau A, Richards FM, Jodrell DI. The ATR Inhibitor AZD6738 Synergizes with Gemcitabine In Vitro and In Vivo to Induce Pancreatic Ductal Adenocarcinoma Regression. Mol Cancer Ther 2018;17:1670-82. [PMID: 29891488 DOI: 10.1158/1535-7163.MCT-18-0010] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 11.3] [Reference Citation Analysis]
18 Meyer HJ, Wienke A, Surov A. Associations between GLUT expression and SUV values derived from FDG-PET in different tumors-A systematic review and meta analysis. PLoS One 2019;14:e0217781. [PMID: 31206524 DOI: 10.1371/journal.pone.0217781] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
19 Ahmad IM, Dafferner AJ, O'Connell KA, Mehla K, Britigan BE, Hollingsworth MA, Abdalla MY. Heme Oxygenase-1 Inhibition Potentiates the Effects of Nab-Paclitaxel-Gemcitabine and Modulates the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021;13:2264. [PMID: 34066839 DOI: 10.3390/cancers13092264] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Yan L, Raj P, Yao W, Ying H. Glucose Metabolism in Pancreatic Cancer. Cancers (Basel) 2019;11:E1460. [PMID: 31569510 DOI: 10.3390/cancers11101460] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 11.0] [Reference Citation Analysis]
21 Biancur DE, Kimmelman AC. The plasticity of pancreatic cancer metabolism in tumor progression and therapeutic resistance. Biochim Biophys Acta Rev Cancer 2018;1870:67-75. [PMID: 29702208 DOI: 10.1016/j.bbcan.2018.04.011] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 18.0] [Reference Citation Analysis]
22 Yoo HC, Park SJ, Nam M, Kang J, Kim K, Yeo JH, Kim JK, Heo Y, Lee HS, Lee MY, Lee CW, Kang JS, Kim YH, Lee J, Choi J, Hwang GS, Bang S, Han JM. A Variant of SLC1A5 Is a Mitochondrial Glutamine Transporter for Metabolic Reprogramming in Cancer Cells. Cell Metab 2020;31:267-283.e12. [PMID: 31866442 DOI: 10.1016/j.cmet.2019.11.020] [Cited by in Crossref: 57] [Cited by in F6Publishing: 55] [Article Influence: 28.5] [Reference Citation Analysis]
23 Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, Shu Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18:157. [PMID: 31711497 DOI: 10.1186/s12943-019-1089-9] [Cited by in Crossref: 221] [Cited by in F6Publishing: 223] [Article Influence: 110.5] [Reference Citation Analysis]
24 Dhar D, Raina K, Kant R, Wempe MF, Serkova NJ, Agarwal C, Agarwal R. Bitter melon juice-intake modulates glucose metabolism and lactate efflux in tumors in its efficacy against pancreatic cancer. Carcinogenesis 2019;40:1164-76. [PMID: 31194859 DOI: 10.1093/carcin/bgz114] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
25 Mesmar F, Dai B, Ibrahim A, Hases L, Jafferali MH, Jose Augustine J, DiLorenzo S, Kang Y, Zhao Y, Wang J, Kim M, Lin CY, Berkenstam A, Fleming J, Williams C. Clinical candidate and genistein analogue AXP107-11 has chemoenhancing functions in pancreatic adenocarcinoma through G protein-coupled estrogen receptor signaling. Cancer Med 2019;8:7705-19. [PMID: 31568691 DOI: 10.1002/cam4.2581] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
26 Yu M, Nguyen ND, Huang Y, Lin D, Fujimoto TN, Molkentine JM, Deorukhkar A, Kang Y, San Lucas FA, Fernandes CJ, Koay EJ, Gupta S, Ying H, Koong AC, Herman JM, Fleming JB, Maitra A, Taniguchi CM. Mitochondrial fusion exploits a therapeutic vulnerability of pancreatic cancer. JCI Insight 2019;5:126915. [PMID: 31335325 DOI: 10.1172/jci.insight.126915] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 18.0] [Reference Citation Analysis]
27 Li M, Zhang X, Lu Y, Meng S, Quan H, Hou P, Tong P, Chai D, Gao X, Zheng J, Tong X, Bai J. The nuclear translocation of transketolase inhibits the farnesoid receptor expression by promoting the binding of HDAC3 to FXR promoter in hepatocellular carcinoma cell lines. Cell Death Dis 2020;11:31. [PMID: 31949131 DOI: 10.1038/s41419-020-2225-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Soliman GA, Shukla SK, Etekpo A, Gunda V, Steenson SM, Gautam N, Alnouti Y, Singh PK. The Synergistic Effect of an ATP-Competitive Inhibitor of mTOR and Metformin on Pancreatic Tumor Growth. Curr Dev Nutr 2020;4:nzaa131. [PMID: 32908958 DOI: 10.1093/cdn/nzaa131] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 McDonald PC, Chafe SC, Brown WS, Saberi S, Swayampakula M, Venkateswaran G, Nemirovsky O, Gillespie JA, Karasinska JM, Kalloger SE, Supuran CT, Schaeffer DF, Bashashati A, Shah SP, Topham JT, Yapp DT, Li J, Renouf DJ, Stanger BZ, Dedhar S. Regulation of pH by Carbonic Anhydrase 9 Mediates Survival of Pancreatic Cancer Cells With Activated KRAS in Response to Hypoxia. Gastroenterology. 2019;157:823-837. [PMID: 31078621 DOI: 10.1053/j.gastro.2019.05.004] [Cited by in Crossref: 50] [Cited by in F6Publishing: 56] [Article Influence: 25.0] [Reference Citation Analysis]
30 Strapcova S, Takacova M, Csaderova L, Martinelli P, Lukacikova L, Gal V, Kopacek J, Svastova E. Clinical and Pre-Clinical Evidence of Carbonic Anhydrase IX in Pancreatic Cancer and Its High Expression in Pre-Cancerous Lesions. Cancers (Basel) 2020;12:E2005. [PMID: 32707920 DOI: 10.3390/cancers12082005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
31 Phan T, Nguyen VH, Buettner R, Morales C, Yang L, Wong P, Tsai W, Salazar MD, Gil Z, Diamond DJ, Rabinowitz JD, Rosen S, Melstrom LG. Inhibition of de novo pyrimidine synthesis augments Gemcitabine induced growth inhibition in an immunocompetent model of pancreatic cancer. Int J Biol Sci 2021;17:2240-51. [PMID: 34239352 DOI: 10.7150/ijbs.60473] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Beatty GL, Werba G, Lyssiotis CA, Simeone DM. The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes Dev 2021;35:940-62. [PMID: 34117095 DOI: 10.1101/gad.348523.121] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]