BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hachey AC, Havrylyuk D, Glazer EC. Biological activities of polypyridyl-type ligands: implications for bioinorganic chemistry and light-activated metal complexes. Curr Opin Chem Biol 2021;61:191-202. [PMID: 33799087 DOI: 10.1016/j.cbpa.2021.01.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 15] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 McCullough AB, Chen J, Valentine NP, Franklin TM, Cantrell AP, Darnell VM, Qureshi Q, Hanson K, Shell SM, Ashford DL. Balancing the interplay between ligand ejection and therapeutic window light absorption in ruthenium polypyridyl complexes. Dalton Trans 2022. [PMID: 35735218 DOI: 10.1039/d2dt01237e] [Reference Citation Analysis]
2 Xu G, Li C, Chi C, Wu L, Sun Y, Zhao J, Xia XH, Gou S. A supramolecular photosensitizer derived from an Arene-Ru(II) complex self-assembly for NIR activated photodynamic and photothermal therapy. Nat Commun 2022;13:3064. [PMID: 35654794 DOI: 10.1038/s41467-022-30721-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Roque Iii JA, Cole HD, Barrett PC, Lifshits LM, Hodges RO, Kim S, Deep G, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. J Am Chem Soc 2022;144:8317-36. [PMID: 35482975 DOI: 10.1021/jacs.2c02475] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
4 Wang Z, Li C, Huang S, Ma X, Sun Y, Zhao J, Gou S. Boosting Phototherapy Efficacy of a NIR-Absorbing Ruthenium (II) Complex via Supramolecular Engineering. Materials Today Nano 2022. [DOI: 10.1016/j.mtnano.2022.100220] [Reference Citation Analysis]
5 Alvarez N, Freddi P, Castellani S, Veiga N, Facchin G, Costa-filho AJ. New Insights into the Biophysical Behavior of an Old Molecule: Experimental and Theoretical Studies of the Interaction Between 1,10-Phenanthroline and Model Phospholipid Membranes. Braz J Phys 2022;52. [DOI: 10.1007/s13538-022-01114-7] [Reference Citation Analysis]
6 Papish ET, Oladipupo OE. Factors that influence singlet oxygen formation vs. ligand substitution for light-activated ruthenium anticancer compounds. Curr Opin Chem Biol 2022;68:102143. [PMID: 35483128 DOI: 10.1016/j.cbpa.2022.102143] [Reference Citation Analysis]
7 Icsel C, Yilmaz VT, Aygun M, Erkisa M, Ulukaya E. Novel 5-fluorouracil complexes of Zn(II) with pyridine-based ligands as potential anticancer agents. Dalton Trans 2022;51:5208-17. [PMID: 35275157 DOI: 10.1039/d1dt04070g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Dalla Pozza M, Abdullrahman A, Cardin CJ, Gasser G, Hall JP. Three's a crowd – stabilisation, structure, and applications of DNA triplexes. Chem Sci . [DOI: 10.1039/d2sc01793h] [Reference Citation Analysis]
9 Ngoepe MP, Clayton HS. Metal Complexes as DNA Synthesis and/or Repair Inhibitors: Anticancer and Antimicrobial Agents. Pharmaceutical Fronts 2021;03:e164-82. [DOI: 10.1055/s-0041-1741035] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Sabithakala T, Reddy CVR. DNA-binding, cleavage, antibacterial and in vitro anticancer activity of copper(II) mixed ligand complexes of 2-(((6-chloro-1H-benzo[d]imidazol-2-yl)methyl)amino)aceticacid and polypyridyl ligands. J Biomol Struct Dyn 2021;:1-13. [PMID: 34963412 DOI: 10.1080/07391102.2021.2019121] [Reference Citation Analysis]
11 Cole HD, Roque JA 3rd, Shi G, Lifshits LM, Ramasamy E, Barrett PC, Hodges RO, Cameron CG, McFarland SA. Anticancer Agent with Inexplicable Potency in Extreme Hypoxia: Characterizing a Light-Triggered Ruthenium Ubertoxin. J Am Chem Soc 2021. [PMID: 34882381 DOI: 10.1021/jacs.1c09010] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
12 Martins-Duarte ES, Portes JA, da Silva RB, Pires HS, Garden SJ, de Souza W. In vitro activity of N-phenyl-1,10-phenanthroline-2-amines against tachyzoites and bradyzoites of Toxoplasma gondii. Bioorg Med Chem 2021;50:116467. [PMID: 34666274 DOI: 10.1016/j.bmc.2021.116467] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Li Y, Liu B, Shi H, Wang Y, Sun Q, Zhang Q. Metal complexes against breast cancer stem cells. Dalton Trans 2021;50:14498-512. [PMID: 34591055 DOI: 10.1039/d1dt02909f] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
14 Oladipupo OE, Brown SR, Lamb RW, Gray JL, Cameron CG, DeRegnaucourt AR, Ward NA, Hall JF, Xu Y, Petersen CM, Qu F, Shrestha AB, Thompson MK, Bonizzoni M, Webster CE, McFarland SA, Kim Y, Papish ET. Light-responsive and Protic Ruthenium Compounds Bearing Bathophenanthroline and Dihydroxybipyridine Ligands Achieve Nanomolar Toxicity towards Breast Cancer Cells. Photochem Photobiol 2021. [PMID: 34411308 DOI: 10.1111/php.13508] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Núñez C, Palavecino A, González IA, Dreyse P, Palavecino CE. Effective Photodynamic Therapy with Ir(III) for Virulent Clinical Isolates of Extended-Spectrum Beta-Lactamase Klebsiella pneumoniae. Pharmaceutics 2021;13:603. [PMID: 33922077 DOI: 10.3390/pharmaceutics13050603] [Cited by in F6Publishing: 4] [Reference Citation Analysis]