BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Suárez ER, Kralovec JA, Bruce Grindley T. Isolation of phosphorylated polysaccharides from algae: the immunostimulatory principle of Chlorella pyrenoidosa. Carbohydrate Research 2010;345:1190-204. [DOI: 10.1016/j.carres.2010.04.004] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 3.9] [Reference Citation Analysis]
Number Citing Articles
1 Zhao H, Wang J, Lv F, Bie X, Lu Z. Chemical characterization and antitumor activity of an exopolysaccharide from Pholiota Squarrosa Quel. AS 5.245. Food Sci Biotechnol 2015;24:659-64. [DOI: 10.1007/s10068-015-0086-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
2 Halaj M, Matulová M, Šutovská M, Barboríková J, Kazimierová I, Fraňová S, Přibyl P, Cepák V, Lukavský J, Capek P. Chemico-physical and pharmacodynamic properties of extracellular Dictyosphaerium chlorelloides biopolymer. Carbohydrate Polymers 2018;198:215-24. [DOI: 10.1016/j.carbpol.2018.06.018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
3 Mirzaie S, Tabarsa M, Safavi M. Effects of extracted polysaccharides from a Chlorella vulgaris biomass on expression of interferon-γ and interleukin-2 in chicken peripheral blood mononuclear cells. J Appl Phycol 2021;33:409-18. [DOI: 10.1007/s10811-020-02301-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Tabarsa M, Shin I, Lee JH, Surayot U, Park W, You S. An immune-enhancing water-soluble α-glucan from Chlorella vulgaris and structural characteristics. Food Sci Biotechnol 2015;24:1933-41. [DOI: 10.1007/s10068-015-0255-0] [Cited by in Crossref: 36] [Cited by in F6Publishing: 23] [Article Influence: 5.1] [Reference Citation Analysis]
5 Roslund MU, Säwén E, Landström J, Rönnols J, Jonsson KM, Lundborg M, Svensson MV, Widmalm G. Complete 1H and 13C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program casper. Carbohydrate Research 2011;346:1311-9. [DOI: 10.1016/j.carres.2011.04.033] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 2.7] [Reference Citation Analysis]
6 Apone F, Barbulova A, Colucci MG. Plant and Microalgae Derived Peptides Are Advantageously Employed as Bioactive Compounds in Cosmetics. Front Plant Sci 2019;10:756. [PMID: 31244874 DOI: 10.3389/fpls.2019.00756] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
7 Ferreira AS, Ferreira SS, Correia A, Vilanova M, Silva TH, Coimbra MA, Nunes C. Reserve, structural and extracellular polysaccharides of Chlorella vulgaris: A holistic approach. Algal Research 2020;45:101757. [DOI: 10.1016/j.algal.2019.101757] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
8 Han W, Li J, Ding Y, Xiong S, Zhao S. Structural Features, Antitumor and Antioxidant Activities of Rice Bran Polysaccharides Using Different Extraction Methods: Activities of rice bran polysaccharides…. Journal of Food Science 2017;82:2403-10. [DOI: 10.1111/1750-3841.13776] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
9 Yew GY, Khoo KS, Chia WY, Ho Y, Law CL, Leong HY, Show PL. A novel lipids recovery strategy for biofuels generation on microalgae Chlorella cultivation with waste molasses. Journal of Water Process Engineering 2020;38:101665. [DOI: 10.1016/j.jwpe.2020.101665] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
10 Qi J, Kim SM. Characterization and immunomodulatory activities of polysaccharides extracted from green alga Chlorella ellipsoidea. International Journal of Biological Macromolecules 2017;95:106-14. [DOI: 10.1016/j.ijbiomac.2016.11.039] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 8.2] [Reference Citation Analysis]
11 Han M, Du C, Xu Z, Qian H, Zhang W. Rheological properties of phosphorylated exopolysaccharide produced by Sporidiobolus pararoseus JD-2. International Journal of Biological Macromolecules 2016;88:603-13. [DOI: 10.1016/j.ijbiomac.2016.04.035] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
12 Ferreira SS, Passos CP, Madureira P, Vilanova M, Coimbra MA. Structure-function relationships of immunostimulatory polysaccharides: A review. Carbohydr Polym 2015;132:378-96. [PMID: 26256362 DOI: 10.1016/j.carbpol.2015.05.079] [Cited by in Crossref: 431] [Cited by in F6Publishing: 380] [Article Influence: 61.6] [Reference Citation Analysis]
13 Barboríková J, Šutovská M, Kazimierová I, Jošková M, Fraňová S, Kopecký J, Capek P. Extracellular polysaccharide produced by Chlorella vulgaris - Chemical characterization and anti-asthmatic profile. Int J Biol Macromol 2019;135:1-11. [PMID: 31121228 DOI: 10.1016/j.ijbiomac.2019.05.104] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
14 Huang H, Huang G. Extraction, separation, modification, structural characterization, and antioxidant activity of plant polysaccharides. Chem Biol Drug Des 2020;96:1209-22. [DOI: 10.1111/cbdd.13794] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
15 Chuang HH, Cheng CY, Chen YT, Shaw JF. Novel highly active recombinant glutaredoxin from Chlorella sorokiniana T-89. J Agric Food Chem 2014;62:927-33. [PMID: 24377422 DOI: 10.1021/jf405213h] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
16 Jakhu S, Sharma Y, Sharma K, Vaid K, Dhar H, Kumar V, Singh RP, Shekh A, Kumar G. Production and characterization of microalgal exopolysaccharide as a reducing and stabilizing agent for green synthesis of gold-nanoparticle: a case study with a Chlorella sp. from Himalayan high-altitude psychrophilic habitat. J Appl Phycol 2021;33:3899-914. [DOI: 10.1007/s10811-021-02580-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Jing L, Zong S, Li J, Ye M, Surhio MM, Yang L. Potential mechanism of protection effect of exopolysaccharide from Lachnum YM406 and its derivatives on carbon tetrachloride-induced acute liver injury in mice. Journal of Functional Foods 2017;36:203-14. [DOI: 10.1016/j.jff.2017.06.057] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
18 Wang J, Wang Y, Xu L, Wu Q, Wang Q, Kong W, Liang J, Yao J, Zhang J. Synthesis and structural features of phosphorylated Artemisia sphaerocephala polysaccharide. Carbohydrate Polymers 2018;181:19-26. [DOI: 10.1016/j.carbpol.2017.10.049] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
19 Zhang H, Jiang F, Zhang J, Wang W, Li L, Yan J. Modulatory effects of polysaccharides from plants, marine algae and edible mushrooms on gut microbiota and related health benefits: A review. Int J Biol Macromol 2022;204:169-92. [PMID: 35122806 DOI: 10.1016/j.ijbiomac.2022.01.166] [Reference Citation Analysis]
20 Gui J, Tong W, Huang S, Liang X, Fang Z, Wang W, Zhang Y. Effects of Chlorella vulgaris polysaccharides accumulation on growth characteristics of Trachemys scripta elegans. International Journal of Biological Macromolecules 2019;141:1304-13. [DOI: 10.1016/j.ijbiomac.2019.08.248] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
21 Yuan Q, Li H, Wei Z, Lv K, Gao C, Liu Y, Zhao L. Isolation, structures and biological activities of polysaccharides from Chlorella: A review. International Journal of Biological Macromolecules 2020;163:2199-209. [DOI: 10.1016/j.ijbiomac.2020.09.080] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
22 Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 2017;29:949-82. [PMID: 28458464 DOI: 10.1007/s10811-016-0974-5] [Cited by in Crossref: 499] [Cited by in F6Publishing: 313] [Article Influence: 83.2] [Reference Citation Analysis]
23 Capek P, Matulová M, Šutovská M, Barboríková J, Molitorisová M, Kazimierová I. Chlorella vulgaris α-L-arabino-α-L-rhamno-α,β-D-galactan structure and mechanisms of its anti-inflammatory and anti-remodelling effects. Int J Biol Macromol 2020;162:188-98. [PMID: 32565301 DOI: 10.1016/j.ijbiomac.2020.06.151] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
24 Jiang N, Li B, Wang X, Xu X, Liu X, Li W, Chang X, Li H, Qi H. The antioxidant and antihyperlipidemic activities of phosphorylated polysaccharide from Ulva pertusa. International Journal of Biological Macromolecules 2020;145:1059-65. [DOI: 10.1016/j.ijbiomac.2019.09.198] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
25 Cherng J, Liu C, Shen C, Lin H, Shih M. Beneficial Effects of Chlorella -11 Peptide on Blocking LPS-Induced Macrophage Activation and Alleviating Thermal Injury-Induced Inflammation in Rats. Int J Immunopathol Pharmacol 2010;23:811-20. [DOI: 10.1177/039463201002300316] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
26 Khalilnezhad A, Mahmoudian E, Mosaffa N, Anissian A, Rashidi M, Amani D. Effects of Chlorella vulgaris on tumor growth in mammary tumor-bearing Balb/c mice: discussing association of an immune-suppressed protumor microenvironment with serum IFNγ and IgG decrease and spleen IgG potentiation. Eur J Nutr 2018;57:1025-44. [DOI: 10.1007/s00394-017-1387-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
27 Halaj M, Paulovičová E, Paulovičová L, Jantová S, Cepák V, Lukavský J, Capek P. Extracellular biopolymers produced by Dictyosphaerium family - Chemical and immunomodulative properties. International Journal of Biological Macromolecules 2019;121:1254-63. [DOI: 10.1016/j.ijbiomac.2018.10.116] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Li Q, Xie Y, Su J, Ye Q, Jia Z. Isolation and structural characterization of a neutral polysaccharide from the stems of Dendrobium densiflorum. International Journal of Biological Macromolecules 2012;50:1207-11. [DOI: 10.1016/j.ijbiomac.2012.03.005] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
29 Dürwald A, Zühlke MK, Schlüter R, Gebbe R, Bartosik D, Unfried F, Becher D, Schweder T. Reaching out in anticipation: bacterial membrane extensions represent a permanent investment in polysaccharide sensing and utilization. Environ Microbiol 2021;23:3149-63. [PMID: 33876569 DOI: 10.1111/1462-2920.15537] [Reference Citation Analysis]
30 Halaj M, Paulovičová E, Paulovičová L, Jantová S, Cepák V, Lukavský J, Capek P. Biopolymer of Dictyosphaerium chlorelloides - chemical characterization and biological effects. International Journal of Biological Macromolecules 2018;113:1248-57. [DOI: 10.1016/j.ijbiomac.2018.03.052] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
31 Ciliberti MG, Albenzio M, Francavilla M, Neglia G, Esposito L, Caroprese M. Extracts from Microalga Chlorella sorokiniana Exert an Anti-Proliferative Effect and Modulate Cytokines in Sheep Peripheral Blood Mononuclear Cells. Animals (Basel) 2019;9:E45. [PMID: 30704147 DOI: 10.3390/ani9020045] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
32 Sun Y, Huo J, Zhong S, Zhu J, Li Y, Li X. Chemical structure and anti-inflammatory activity of a branched polysaccharide isolated from Phellinus baumii. Carbohydr Polym 2021;268:118214. [PMID: 34127216 DOI: 10.1016/j.carbpol.2021.118214] [Reference Citation Analysis]
33 Usov A, Zelinsky N. Chemical structures of algal polysaccharides. Functional Ingredients from Algae for Foods and Nutraceuticals. Elsevier; 2013. pp. 23-86. [DOI: 10.1533/9780857098689.1.23] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
34 Ma J, Mo H, Chen Y, Ding D, Hu L. Inhibition of aflatoxin synthesis in Aspergillus flavus by three structurally modified lentinans. Int J Mol Sci 2014;15:3860-70. [PMID: 24599078 DOI: 10.3390/ijms15033860] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
35 Xie X, Shen W, Zhou Y, Ma L, Xu D, Ding J, He L, Shen B, Zhou C. Characterization of a polysaccharide from Eupolyphaga sinensis walker and its effective antitumor activity via lymphocyte activation. International Journal of Biological Macromolecules 2020;162:31-42. [DOI: 10.1016/j.ijbiomac.2020.06.120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Mišurcová L, Škrovánková S, Samek D, Ambrožová J, Machů L. Health benefits of algal polysaccharides in human nutrition. Adv Food Nutr Res 2012;66:75-145. [PMID: 22909979 DOI: 10.1016/B978-0-12-394597-6.00003-3] [Cited by in Crossref: 73] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
37 Guo Y, Pan D, Sun Y, Xin L, Li H, Zeng X. Antioxidant activity of phosphorylated exopolysaccharide produced by Lactococcus lactis subsp. lactis. Carbohydrate Polymers 2013;97:849-54. [DOI: 10.1016/j.carbpol.2013.06.024] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
38 Zhuang X, Zhang D, Qin W, Deng J, Shan H, Tao L, Li Y. A comparison on the preparation of hot water extracts from Chlorella pyrenoidosa (CPEs) and radical scavenging and macrophage activation effects of CPEs. Food Funct 2014;5:3252-60. [DOI: 10.1039/c4fo00214h] [Cited by in Crossref: 4] [Article Influence: 0.5] [Reference Citation Analysis]
39 Chen CL, Liou SF, Chen SJ, Shih MF. Protective effects of Chlorella-derived peptide on UVB-induced production of MMP-1 and degradation of procollagen genes in human skin fibroblasts. Regul Toxicol Pharmacol 2011;60:112-9. [PMID: 21397653 DOI: 10.1016/j.yrtph.2011.03.001] [Cited by in Crossref: 47] [Cited by in F6Publishing: 36] [Article Influence: 4.3] [Reference Citation Analysis]
40 Tian J, Zhang C, Wang X, Rui X, Zhang Q, Chen X, Dong M, Li W. Structural characterization and immunomodulatory activity of intracellular polysaccharide from the mycelium of Paecilomyces cicadae TJJ1213. Food Res Int 2021;147:110515. [PMID: 34399493 DOI: 10.1016/j.foodres.2021.110515] [Reference Citation Analysis]
41 Kakar MU, Kakar IU, Mehboob MZ, Zada S, Soomro H, Umair M, Iqbal I, Umer M, Shaheen S, Syed SF, Deng Y, Dai R. A review on polysaccharides from Artemisia sphaerocephala Krasch seeds, their extraction, modification, structure, and applications. Carbohydr Polym 2021;252:117113. [PMID: 33183585 DOI: 10.1016/j.carbpol.2020.117113] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
42 Sui Z, Gizaw Y, Bemiller JN. Extraction of polysaccharides from a species of Chlorella. Carbohydrate Polymers 2012;90:1-7. [DOI: 10.1016/j.carbpol.2012.03.062] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
43 Hedrich R, Machill S, Brunner E. Biomineralization in diatoms—phosphorylated saccharides are part of Stephanopyxis turris biosilica. Carbohydrate Research 2013;365:52-60. [DOI: 10.1016/j.carres.2012.11.001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]