BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tie J, Chai H, Mao Z, Zhang L, Zhong Y, Sui X, Xu H. Nanocellulose-mediated transparent high strength conductive hydrogel based on in-situ formed polypyrrole nanofibrils as a multimodal sensor. Carbohydr Polym 2021;273:118600. [PMID: 34561000 DOI: 10.1016/j.carbpol.2021.118600] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhao J, Zhao X, Leng L, Xu J, Yang X, Cui W, Zheng J, Hu R. High-stretchable, self-healing, self-adhesive, self-extinguishing, low-temperature tolerant starch-based gel and its application in stimuli-responsiveness. Carbohydr Polym 2023;307:120600. [PMID: 36781283 DOI: 10.1016/j.carbpol.2023.120600] [Reference Citation Analysis]
2 Liu C, Wen M, Mai S, Ma Y, Duan Q, Bao X, Zou W, Liu H. Harnessing nitrogen-doped graphene quantum dots for enhancing the fluorescence and conductivity of the starch-based film. Carbohydr Polym 2023;303:120475. [PMID: 36657854 DOI: 10.1016/j.carbpol.2022.120475] [Reference Citation Analysis]
3 Shu L, Wang Z, Zhang XF, Yao J. Highly conductive and anti-freezing cellulose hydrogel for flexible sensors. Int J Biol Macromol 2023;230:123425. [PMID: 36706872 DOI: 10.1016/j.ijbiomac.2023.123425] [Reference Citation Analysis]
4 Huang H, Dong Z, Ren X, Jia B, Li G, Zhou S, Zhao X, Wang W. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. Nano Res 2023. [DOI: 10.1007/s12274-022-5129-1] [Reference Citation Analysis]
5 Dong L, Zhou X, Zheng S, Luo Z, Nie Y, Feng X, Zhu J, Wang Z, Lu X, Mu L. Liquid Metal @ Mxene Spring Supports Ionic Gel with Excellent Mechanical Properties for High-Sensitivity Wearable Strain Sensor. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141370] [Reference Citation Analysis]
6 Camlibel NO, Koncar V, Cochrane C. Polymer composites as pressure sensors. Polymeric Nanocomposite Materials for Sensor Applications 2023. [DOI: 10.1016/b978-0-323-98830-8.00021-7] [Reference Citation Analysis]
7 Zhang W, Wen J, Yang J, Li M, Peng F, Ma M, Bian J. Multifunctional hybrid hydrogel with transparency, conductivity, and self-adhesion for soft sensors using hemicellulose-decorated polypyrrole as a conductive matrix. Int J Biol Macromol 2022;223:1-10. [PMID: 36336151 DOI: 10.1016/j.ijbiomac.2022.10.262] [Reference Citation Analysis]
8 Si R, Pu J, Luo H, Wu C, Duan G. Nanocellulose-Based Adsorbents for Heavy Metal Ion. Polymers (Basel) 2022;14. [PMID: 36559846 DOI: 10.3390/polym14245479] [Reference Citation Analysis]
9 Guo X, Xing T, Feng J. Simultaneously Stretchable and Compressible Flexible Strain Sensors Based on Carbon Nanotube Composites for Motion Monitoring and Human–Computer Interactions. ACS Appl Nano Mater 2022. [DOI: 10.1021/acsanm.2c04267] [Reference Citation Analysis]
10 Pan M, Wu M, Shui T, Xiang L, Yang W, Wang W, Liu X, Wang J, Chen X, Zeng H. Highly stretchable, elastic, antimicrobial conductive hydrogels with environment-adaptive adhesive property for health monitoring. Journal of Colloid and Interface Science 2022;622:612-24. [DOI: 10.1016/j.jcis.2022.04.119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Wang D, Li Z, Qi K, Qiu Y, Guo X. Insights on the capacitance degradation of polypyrrole nanowires during prolonged cycling. Polymer Degradation and Stability 2022;202:110034. [DOI: 10.1016/j.polymdegradstab.2022.110034] [Reference Citation Analysis]
12 Tie J, Mao Z, Zhang L, Zhong Y, Sui X, Xu H. Polypyrrole nanorods coated on cellulose nanofibers by pickering emulsion as conductive medium for multimodal gel-based sensor. Cellulose. [DOI: 10.1007/s10570-022-04667-7] [Reference Citation Analysis]
13 Rong L, Xie X, Yuan W, Fu Y. Superior, Environmentally Tolerant, Flexible, and Adhesive Poly(ionic liquid) Gel as a Multifaceted Underwater Sensor. ACS Appl Mater Interfaces 2022. [PMID: 35704849 DOI: 10.1021/acsami.2c06846] [Reference Citation Analysis]
14 Horta-velázquez A, Morales-narváez E. Nanocellulose in wearable sensors. Green Analytical Chemistry 2022;1:100009. [DOI: 10.1016/j.greeac.2022.100009] [Reference Citation Analysis]
15 Zhang J, Zhang Q, Liu X, Xia S, Gao Y, Gao G. Flexible and wearable strain sensors based on conductive hydrogels. Journal of Polymer Science. [DOI: 10.1002/pol.20210935] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Abdel-karim AM, Salama A, Hassan ML. High dielectric flexible thin films based on cellulose nanofibers and zinc sulfide nanoparticles. Materials Science and Engineering: B 2022;276:115538. [DOI: 10.1016/j.mseb.2021.115538] [Reference Citation Analysis]
17 Liu H, Jia X, Liu R, Chen K, Wang Z, Lyu T, Cui X, Zhao Y, Tian Y. Multifunctional gradient hydrogel with ultrafast thermo-responsive actuation and ultrahigh conductivity. J Mater Chem A. [DOI: 10.1039/d2ta05770k] [Reference Citation Analysis]
18 Zulaikha W, Hassan MZ, Ismail Z. Recent development of natural fibre for nanocellulose extraction and application. Materials Today: Proceedings 2022;66:2265-2273. [DOI: 10.1016/j.matpr.2022.06.221] [Reference Citation Analysis]
19 Gandini A, M Lacerda T. Monomers and Macromolecular Materials from Renewable Resources: State of the Art and Perspectives. Molecules 2021;27:159. [PMID: 35011391 DOI: 10.3390/molecules27010159] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]