BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen J, Jin R, Zhao J, Liu J, Ying H, Yan H, Zhou S, Liang Y, Huang D, Liang X, Yu H, Lin H, Cai X. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Letters 2015;367:1-11. [DOI: 10.1016/j.canlet.2015.06.019] [Cited by in Crossref: 111] [Cited by in F6Publishing: 121] [Article Influence: 15.9] [Reference Citation Analysis]
Number Citing Articles
1 Chen B, Dragomir MP, Yang C, Li Q, Horst D, Calin GA. Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther 2022;7:121. [PMID: 35418578 DOI: 10.1038/s41392-022-00975-3] [Reference Citation Analysis]
2 Chen BW, Zhou Y, Wei T, Wen L, Zhang YB, Shen SC, Zhang J, Ma T, Chen W, Ni L, Wang Y, Bai XL, Liang TB. lncRNA-POIR promotes epithelial-mesenchymal transition and suppresses sorafenib sensitivity simultaneously in hepatocellular carcinoma by sponging miR-182-5p. J Cell Biochem 2021;122:130-42. [PMID: 32951268 DOI: 10.1002/jcb.29844] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
3 Wang MJ, Chen JJ, Song SH, Su J, Zhao LH, Liu QG, Yang T, Chen Z, Liu C, Fu ZR, Hu YP, Chen F. Inhibition of SIRT1 Limits Self-Renewal and Oncogenesis by Inducing Senescence of Liver Cancer Stem Cells. J Hepatocell Carcinoma 2021;8:685-99. [PMID: 34235106 DOI: 10.2147/JHC.S296234] [Reference Citation Analysis]
4 Lin JC, Zhu NX, Wu LF. Research progress of circRNAs in chemotherapy resistance of digestive system neoplasms. Shijie Huaren Xiaohua Zazhi 2021; 29(21): 1237-1247 [DOI: 10.11569/wcjd.v29.i21.1237] [Reference Citation Analysis]
5 Li W, Qiu Y, Hao J, Zhao C, Deng X, Shu G. Dauricine upregulates the chemosensitivity of hepatocellular carcinoma cells: Role of repressing glycolysis via miR-199a:HK2/PKM2 modulation. Food Chem Toxicol 2018;121:156-65. [PMID: 30171973 DOI: 10.1016/j.fct.2018.08.030] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
6 Montoya S, Soong D, Nguyen N, Affer M, Munamarty SP, Taylor J. Targeted Therapies in Cancer: To Be or Not to Be, Selective. Biomedicines 2021;9:1591. [PMID: 34829820 DOI: 10.3390/biomedicines9111591] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Ryu JW, Kim SK, Son MY, Jeon SJ, Oh JH, Lim JH, Cho S, Jung CR, Hamamoto R, Kim DS, Cho HS. Novel prognostic marker PRMT1 regulates cell growth via downregulation of CDKN1A in HCC. Oncotarget 2017;8:115444-55. [PMID: 29383172 DOI: 10.18632/oncotarget.23296] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
8 Liao YJ, Hsu SM, Chien CY, Wang YH, Hsu MH, Suk FM. Treatment with a New Barbituric Acid Derivative Exerts Antiproliferative and Antimigratory Effects against Sorafenib Resistance in Hepatocellular Carcinoma. Molecules 2020;25:E2856. [PMID: 32575795 DOI: 10.3390/molecules25122856] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
9 Zhu Q, Ren H, Li X, Qian B, Fan S, Hu F, Xu L, Zhai B. Silencing KIF14 reverses acquired resistance to sorafenib in hepatocellular carcinoma. Aging (Albany NY) 2020;12:22975-3003. [PMID: 33203790 DOI: 10.18632/aging.104028] [Reference Citation Analysis]
10 Bort A, Spínola E, Rodríguez-Henche N, Díaz-Laviada I. Capsaicin exerts synergistic antitumor effect with sorafenib in hepatocellular carcinoma cells through AMPK activation. Oncotarget 2017;8:87684-98. [PMID: 29152112 DOI: 10.18632/oncotarget.21196] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
11 Hu B, Cheng JW, Hu JW, Li H, Ma XL, Tang WG, Sun YF, Guo W, Huang A, Zhou KQ, Gao PT, Cao Y, Qiu SJ, Zhou J, Fan J, Yang XR. KPNA3 Confers Sorafenib Resistance to Advanced Hepatocellular Carcinoma via TWIST Regulated Epithelial-Mesenchymal Transition. J Cancer 2019;10:3914-25. [PMID: 31417635 DOI: 10.7150/jca.31448] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
12 Sarmento-Ribeiro AB, Scorilas A, Gonçalves AC, Efferth T, Trougakos IP. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist Updat 2019;47:100646. [PMID: 31733611 DOI: 10.1016/j.drup.2019.100646] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
13 Yao W, Ba Q, Li X, Li H, Zhang S, Yuan Y, Wang F, Duan X, Li J, Zhang W, Wang H. A Natural CCR2 Antagonist Relieves Tumor-associated Macrophage-mediated Immunosuppression to Produce a Therapeutic Effect for Liver Cancer. EBioMedicine 2017;22:58-67. [PMID: 28754304 DOI: 10.1016/j.ebiom.2017.07.014] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 8.6] [Reference Citation Analysis]
14 Mikami D, Kobayashi M, Uwada J, Yazawa T, Kamiyama K, Nishimori K, Nishikawa Y, Nishikawa S, Yokoi S, Taniguchi T, Iwano M. AR420626, a selective agonist of GPR41/FFA3, suppresses growth of hepatocellular carcinoma cells by inducing apoptosis via HDAC inhibition. Ther Adv Med Oncol 2020;12:1758835920913432. [PMID: 33014144 DOI: 10.1177/1758835920913432] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Younis NS, Ghanim AMH, Saber S. Mebendazole augments sensitivity to sorafenib by targeting MAPK and BCL-2 signalling in n-nitrosodiethylamine-induced murine hepatocellular carcinoma. Sci Rep 2019;9:19095. [PMID: 31836811 DOI: 10.1038/s41598-019-55666-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
16 Zhou B, Lu D, Wang A, Cui J, Zhang L, Li J, Fan L, Wei W, Liu J, Sun G. Endoplasmic reticulum stress promotes sorafenib resistance via miR-188-5p/hnRNPA2B1-mediated upregulation of PKM2 in hepatocellular carcinoma. Mol Ther Nucleic Acids 2021;26:1051-65. [PMID: 34786210 DOI: 10.1016/j.omtn.2021.09.014] [Reference Citation Analysis]
17 Kong F, Yan Y, Deng J, Zhu Y, Li Y, Li H, Wang Y. LncRNA SNHG16 Promotes Proliferation, Migration, and Invasion of Glioma Cells Through Regulating the miR-490/PCBP2 Axis. Cancer Biother Radiopharm 2020. [PMID: 32716637 DOI: 10.1089/cbr.2019.3535] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
18 Peng H, Xue R, Ju Z, Qiu J, Wang J, Yan W, Gan X, Tian Y, Shen H, Wang X, Wang X, Ni X, Yu Y, Lu L. Cancer-associated fibroblasts enhance the chemoresistance of CD73+ hepatocellular carcinoma cancer cells via HGF-Met-ERK1/2 pathway. Ann Transl Med 2020;8:856. [PMID: 32793700 DOI: 10.21037/atm-20-1038] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
19 Sun F, Wang JZ, Luo JJ, Wang YQ, Pan Q. Exosomes in the Oncobiology, Diagnosis, and Therapy of Hepatic Carcinoma: A New Player of an Old Game. Biomed Res Int. 2018;2018:2747461. [PMID: 30148162 DOI: 10.1155/2018/2747461] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
20 Yang X, Xia W, Chen L, Wu CX, Zhang CC, Olson P, Wang XQ. Synergistic antitumor effect of a γ-secretase inhibitor PF-03084014 and sorafenib in hepatocellular carcinoma. Oncotarget 2018;9:34996-5007. [PMID: 30405889 DOI: 10.18632/oncotarget.26209] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
21 Vacante F, Senesi P, Montesano A, Paini S, Luzi L, Terruzzi I. Metformin Counteracts HCC Progression and Metastasis Enhancing KLF6/p21 Expression and Downregulating the IGF Axis. Int J Endocrinol 2019;2019:7570146. [PMID: 30774659 DOI: 10.1155/2019/7570146] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
22 Schipilliti FM, Garajová I, Rovesti G, Balsano R, Piacentini F, Dominici M, Gelsomino F. The Growing Skyline of Advanced Hepatocellular Carcinoma Treatment: A Review. Pharmaceuticals (Basel) 2021;14:43. [PMID: 33429973 DOI: 10.3390/ph14010043] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Lyu N, Kong Y, Mu L, Lin Y, Li J, Liu Y, Zhang Z, Zheng L, Deng H, Li S, Xie Q, Guo R, Shi M, Xu L, Cai X, Wu P, Zhao M. Hepatic arterial infusion of oxaliplatin plus fluorouracil/leucovorin vs. sorafenib for advanced hepatocellular carcinoma. Journal of Hepatology 2018;69:60-9. [DOI: 10.1016/j.jhep.2018.02.008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 37] [Article Influence: 7.8] [Reference Citation Analysis]
24 Di Giacomo S, Briz O, Monte MJ, Sanchez-Vicente L, Abete L, Lozano E, Mazzanti G, Di Sotto A, Marin JJG. Chemosensitization of hepatocellular carcinoma cells to sorafenib by β-caryophyllene oxide-induced inhibition of ABC export pumps. Arch Toxicol 2019;93:623-34. [PMID: 30659321 DOI: 10.1007/s00204-019-02395-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
25 Xu J, Zheng L, Chen J, Sun Y, Lin H, Jin RA, Tang M, Liang X, Cai X. Increasing AR by HIF-2α inhibitor (PT-2385) overcomes the side-effects of sorafenib by suppressing hepatocellular carcinoma invasion via alteration of pSTAT3, pAKT and pERK signals. Cell Death Dis 2017;8:e3095. [PMID: 29022906 DOI: 10.1038/cddis.2017.411] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 5.6] [Reference Citation Analysis]
26 Zhao F, Feng G, Zhu J, Su Z, Guo R, Liu J, Zhang H, Zhai Y. 3-Methyladenine-enhanced susceptibility to sorafenib in hepatocellular carcinoma cells by inhibiting autophagy. Anticancer Drugs 2021;32:386-93. [PMID: 33395067 DOI: 10.1097/CAD.0000000000001032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
27 Mao J, Tian Y, Wang C, Jiang K, Li R, Yao Y, Zhang R, Sun D, Liang R, Gao Z, Wang Q, Wang L. CBX2 Regulates Proliferation and Apoptosis via the Phosphorylation of YAP in Hepatocellular Carcinoma. J Cancer 2019;10:2706-19. [PMID: 31258779 DOI: 10.7150/jca.31845] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 7.7] [Reference Citation Analysis]
28 Liu L, Borlak J. Advances in Liver Cancer Stem Cell Isolation and their Characterization. Stem Cell Rev Rep. 2021;epub ahead of print. [PMID: 33432485 DOI: 10.1007/s12015-020-10114-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
29 Bort A, Sánchez BG, Mateos-Gómez PA, Vara-Ciruelos D, Rodríguez-Henche N, Díaz-Laviada I. Targeting AMP-activated kinase impacts hepatocellular cancer stem cells induced by long-term treatment with sorafenib. Mol Oncol 2019;13:1311-31. [PMID: 30959553 DOI: 10.1002/1878-0261.12488] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
30 Kaemmerer D, Schindler R, Mußbach F, Dahmen U, Altendorf-Hofmann A, Dirsch O, Sänger J, Schulz S, Lupp A. Somatostatin and CXCR4 chemokine receptor expression in hepatocellular and cholangiocellular carcinomas: tumor capillaries as promising targets. BMC Cancer 2017;17:896. [PMID: 29282035 DOI: 10.1186/s12885-017-3911-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
31 Man S, Yao J, Lv P, Liu Y, Yang L, Ma L. Curcumin-enhanced antitumor effects of sorafenib via regulating the metabolism and tumor microenvironment. Food Funct 2020;11:6422-32. [PMID: 32613952 DOI: 10.1039/c9fo01901d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
32 Zhan N, Michael AA, Wu K, Zeng G, Bell A, Tao J, Monga SP. The Effect of Selective c-MET Inhibitor on Hepatocellular Carcinoma in the MET-Active, β-Catenin-Mutated Mouse Model. Gene Expr 2018;18:135-47. [PMID: 29409568 DOI: 10.3727/105221618X15174108894682] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
33 Fan Z, Duan J, Wang L, Xiao S, Li L, Yan X, Yao W, Wu L, Zhang S, Zhang Y, Li Y, Zhu X, Hu Y, Zhang D, Jiao S, Xu X. PTK2 promotes cancer stem cell traits in hepatocellular carcinoma by activating Wnt/β-catenin signaling. Cancer Letters 2019;450:132-43. [DOI: 10.1016/j.canlet.2019.02.040] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
34 Huang D, Yuan W, Li H, Li S, Chen Z, Yang H. Identification of key pathways and biomarkers in sorafenib-resistant hepatocellular carcinoma using bioinformatics analysis. Exp Ther Med 2018;16:1850-8. [PMID: 30186410 DOI: 10.3892/etm.2018.6427] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
35 Bai J, Liu Z, Liu J, Zhang S, Tian Y, Zhang Y, Ren L, Kong D. Mitochondrial metabolic study guided by proteomics analysis in hepatocellular carcinoma cells surviving long-term incubation with the highest dose of sorafenib. Aging (Albany NY) 2019;11:12452-75. [PMID: 31881007 DOI: 10.18632/aging.102582] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
36 Huang M, Chen C, Geng J, Han D, Wang T, Xie T, Wang L, Wang Y, Wang C, Lei Z, Chu X. Targeting KDM1A attenuates Wnt/β-catenin signaling pathway to eliminate sorafenib-resistant stem-like cells in hepatocellular carcinoma. Cancer Lett 2017;398:12-21. [PMID: 28377178 DOI: 10.1016/j.canlet.2017.03.038] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 9.4] [Reference Citation Analysis]
37 Geng N, Jin Y, Li Y, Zhu S, Bai H. AKR1B10 Inhibitor Epalrestat Facilitates Sorafenib-Induced Apoptosis and Autophagy Via Targeting the mTOR Pathway in Hepatocellular Carcinoma. Int J Med Sci 2020;17:1246-56. [PMID: 32547320 DOI: 10.7150/ijms.42956] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
38 Dong J, Zhai B, Sun W, Hu F, Cheng H, Xu J. Activation of phosphatidylinositol 3-kinase/AKT/snail signaling pathway contributes to epithelial-mesenchymal transition-induced multi-drug resistance to sorafenib in hepatocellular carcinoma cells. PLoS One 2017;12:e0185088. [PMID: 28934275 DOI: 10.1371/journal.pone.0185088] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 10.6] [Reference Citation Analysis]
39 Shimazu K, Inoue M, Sugiyama S, Fukuda K, Yoshida T, Taguchi D, Uehara Y, Kuriyama S, Tanaka M, Miura M, Nanjyo H, Iwabuchi Y, Shibata H. Curcumin analog, GO-Y078, overcomes resistance to tumor angiogenesis inhibitors. Cancer Sci 2018;109:3285-93. [PMID: 30024080 DOI: 10.1111/cas.13741] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
40 Xu J, Ji L, Liang Y, Wan Z, Zheng W, Song X, Gorshkov K, Sun Q, Lin H, Zheng X, Chen J, Jin RA, Liang X, Cai X. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther 2020;5:298. [PMID: 33361760 DOI: 10.1038/s41392-020-00375-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
41 Tang L, Zhu S, Peng W, Yin X, Tan C, Yang Y. Epigenetic identification of mitogen-activated protein kinase 10 as a functional tumor suppressor and clinical significance for hepatocellular carcinoma. PeerJ 2021;9:e10810. [PMID: 33604188 DOI: 10.7717/peerj.10810] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Hendi M, Mou Y, Lv J, Zhang B, Cai X. Hepatic Arterial Infusion Chemotherapy Is a Feasible Treatment Option for Hepatocellular Carcinoma: A New Update. Gastrointest Tumors 2021;8:145-52. [PMID: 34722467 DOI: 10.1159/000516405] [Reference Citation Analysis]
43 Cheng Z, Wei-Qi J, Jin D. New insights on sorafenib resistance in liver cancer with correlation of individualized therapy. Biochim Biophys Acta Rev Cancer 2020;1874:188382. [PMID: 32522600 DOI: 10.1016/j.bbcan.2020.188382] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
44 Yang X, Liu J, Liang Q, Sun G. Valproic acid reverses sorafenib resistance through inhibiting activated Notch/Akt signaling pathway in hepatocellular carcinoma. Fundam Clin Pharmacol 2021;35:690-9. [PMID: 33015852 DOI: 10.1111/fcp.12608] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
45 Wang Y, Wang Z, Jia F, Xu Q, Shu Z, Deng J, Li A, Yu M, Yu Z. CXCR4-guided liposomes regulating hypoxic and immunosuppressive microenvironment for sorafenib-resistant tumor treatment. Bioactive Materials 2022;17:147-61. [DOI: 10.1016/j.bioactmat.2022.01.003] [Reference Citation Analysis]
46 Chen S, Cao Q, Wen W, Wang H. Targeted therapy for hepatocellular carcinoma: Challenges and opportunities. Cancer Lett. 2019;460:1-9. [PMID: 31207320 DOI: 10.1016/j.canlet.2019.114428] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 16.7] [Reference Citation Analysis]
47 Weng X, Zeng L, Yan F, He M, Wu X, Zheng D. Cyclin-dependent kinase inhibitor 2B gene is associated with the sensitivity of hepatoma cells to Sorafenib. Onco Targets Ther 2019;12:5025-36. [PMID: 31388306 DOI: 10.2147/OTT.S196607] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Liu J, Yang X, Liang Q, Yu Y, Shen X, Sun G. Valproic acid overcomes sorafenib resistance by reducing the migration of Jagged2-mediated Notch1 signaling pathway in hepatocellular carcinoma cells. Int J Biochem Cell Biol 2020;126:105820. [PMID: 32750425 DOI: 10.1016/j.biocel.2020.105820] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Zhang X, Wu L, Xu Y, Yu H, Chen Y, Zhao H, Lei J, Zhou Y, Zhang J, Wang J, Peng J, Jiang L, Sheng H, Li Y. Microbiota-derived SSL6 enhances the sensitivity of hepatocellular carcinoma to sorafenib by down-regulating glycolysis. Cancer Lett 2020;481:32-44. [PMID: 32246956 DOI: 10.1016/j.canlet.2020.03.027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Yu M, Wu T, Lee C, Lee Y, Lian J, Tsai C, Hsieh S, Tsai C. Percentage genome change and chromosome 7q amplification predict sorafenib response in advanced hepatocellular carcinoma. Biomedical Journal 2020. [DOI: 10.1016/j.bj.2020.07.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Yang JD, Heimbach JK. New advances in the diagnosis and management of hepatocellular carcinoma. BMJ. [DOI: 10.1136/bmj.m3544] [Cited by in Crossref: 13] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
52 Chen F, Fang Y, Zhao R, Le J, Zhang B, Huang R, Chen Z, Shao J. Evolution in medicinal chemistry of sorafenib derivatives for hepatocellular carcinoma. Eur J Med Chem 2019;179:916-35. [PMID: 31306818 DOI: 10.1016/j.ejmech.2019.06.070] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
53 Suk FM, Liu CL, Hsu MH, Chuang YT, Wang JP, Liao YJ. Treatment with a new benzimidazole derivative bearing a pyrrolidine side chain overcomes sorafenib resistance in hepatocellular carcinoma. Sci Rep 2019;9:17259. [PMID: 31754201 DOI: 10.1038/s41598-019-53863-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
54 Zhao W, Bai B, Hong Z, Zhang X, Zhou B. Berbamine (BBM), a Natural STAT3 Inhibitor, Synergistically Enhances the Antigrowth and Proapoptotic Effects of Sorafenib on Hepatocellular Carcinoma Cells. ACS Omega 2020;5:24838-47. [PMID: 33015502 DOI: 10.1021/acsomega.0c03527] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Shi T, Iwama H, Fujita K, Kobara H, Nishiyama N, Fujihara S, Goda Y, Yoneyama H, Morishita A, Tani J, Yamada M, Nakahara M, Takuma K, Masaki T. Evaluating the Effect of Lenvatinib on Sorafenib-Resistant Hepatocellular Carcinoma Cells. Int J Mol Sci 2021;22:13071. [PMID: 34884875 DOI: 10.3390/ijms222313071] [Reference Citation Analysis]
56 Shrestha R, Prithviraj P, Bridle KR, Crawford DHG, Jayachandran A. Combined Inhibition of TGF-β1-Induced EMT and PD-L1 Silencing Re-Sensitizes Hepatocellular Carcinoma to Sorafenib Treatment. J Clin Med 2021;10:1889. [PMID: 33925488 DOI: 10.3390/jcm10091889] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Ceballos MP, Angel A, Delprato CB, Livore VI, Ferretti AC, Lucci A, Comanzo CG, Alvarez ML, Quiroga AD, Mottino AD, Carrillo MC. Sirtuin 1 and 2 inhibitors enhance the inhibitory effect of sorafenib in hepatocellular carcinoma cells. Eur J Pharmacol 2021;892:173736. [PMID: 33220273 DOI: 10.1016/j.ejphar.2020.173736] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
58 Wang P, Shen Y, Zhao L. Chitosan nanoparticles loaded with aspirin and 5-fluororacil enable synergistic antitumour activity through the modulation of NF-κB/COX-2 signalling pathway. IET Nanobiotechnol 2020;14:479-84. [PMID: 32755957 DOI: 10.1049/iet-nbt.2020.0002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
59 Yao J, Man S, Dong H, Yang L, Ma L, Gao W. Combinatorial treatment of Rhizoma Paridis saponins and sorafenib overcomes the intolerance of sorafenib. J Steroid Biochem Mol Biol 2018;183:159-66. [PMID: 29932973 DOI: 10.1016/j.jsbmb.2018.06.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
60 Son Y, Shin NR, Kim SH, Park SC, Lee HJ. Fibrinogen-Like Protein 1 Modulates Sorafenib Resistance in Human Hepatocellular Carcinoma Cells. Int J Mol Sci 2021;22:5330. [PMID: 34069373 DOI: 10.3390/ijms22105330] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
61 Li S, Dai W, Mo W, Li J, Feng J, Wu L, Liu T, Yu Q, Xu S, Wang W, Lu X, Zhang Q, Chen K, Xia Y, Lu J, Zhou Y, Fan X, Xu L, Guo C. By inhibiting PFKFB3, aspirin overcomes sorafenib resistance in hepatocellular carcinoma. Int J Cancer 2017;141:2571-84. [PMID: 28857200 DOI: 10.1002/ijc.31022] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 7.8] [Reference Citation Analysis]
62 Jayachandran A, Dhungel B, Steel JC. Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma. J Hematol Oncol. 2016;9:74. [PMID: 27578206 DOI: 10.1186/s13045-016-0307-9] [Cited by in Crossref: 88] [Cited by in F6Publishing: 93] [Article Influence: 14.7] [Reference Citation Analysis]
63 Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Ishige N. 2-Deoxyglucose and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cells. Oncol Lett 2017;13:800-4. [PMID: 28356961 DOI: 10.3892/ol.2016.5510] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
64 Brun S, Pascussi JM, Gifu EP, Bestion E, Macek-Jilkova Z, Wang G, Bassissi F, Mezouar S, Courcambeck J, Merle P, Decaens T, Pannequin J, Halfon P, Caron de Fromentel C. GNS561, a New Autophagy Inhibitor Active against Cancer Stem Cells in Hepatocellular Carcinoma and Hepatic Metastasis from Colorectal Cancer. J Cancer 2021;12:5432-8. [PMID: 34405006 DOI: 10.7150/jca.58533] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Jing Z, Gao J, Li J, Niu F, Tian L, Nan P, Sun Y, Xie X, Zhu Y, Zhao Y, Liu F, Zhou L, Sun Y, Zhao X. Acetylation-induced PCK isoenzyme transition promotes metabolic adaption of liver cancer to systemic therapy. Cancer Lett 2021;519:46-62. [PMID: 34166767 DOI: 10.1016/j.canlet.2021.06.016] [Reference Citation Analysis]
66 Bouattour M, Raymond E, Qin S, Cheng AL, Stammberger U, Locatelli G, Faivre S. Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology 2018;67:1132-49. [PMID: 28862760 DOI: 10.1002/hep.29496] [Cited by in Crossref: 103] [Cited by in F6Publishing: 102] [Article Influence: 25.8] [Reference Citation Analysis]
67 Chen W, Yang J, Zhang Y, Cai H, Chen X, Sun D. Regorafenib reverses HGF-induced sorafenib resistance by inhibiting epithelial-mesenchymal transition in hepatocellular carcinoma. FEBS Open Bio 2019;9:335-47. [PMID: 30761258 DOI: 10.1002/2211-5463.12578] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
68 Xiao MC, Qian H, Huang CK, Zheng BN, Yan FZ, Liu F, Zhang X, Chen SJ, Luo C, Xie WF. Imatinib inhibits the malignancy of hepatocellular carcinoma by suppressing autophagy. Eur J Pharmacol 2021;906:174217. [PMID: 34087223 DOI: 10.1016/j.ejphar.2021.174217] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
69 Ma YS, Lv ZW, Yu F, Chang ZY, Cong XL, Zhong XM, Lu GX, Zhu J, Fu D. MicroRNA-302a/d inhibits the self-renewal capability and cell cycle entry of liver cancer stem cells by targeting the E2F7/AKT axis. J Exp Clin Cancer Res 2018;37:252. [PMID: 30326936 DOI: 10.1186/s13046-018-0927-8] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
70 Liu J, Liu Y, Meng L, Liu K, Ji B. Targeting the PD-L1/DNMT1 axis in acquired resistance to sorafenib in human hepatocellular carcinoma. Oncol Rep 2017;38:899-907. [PMID: 28627705 DOI: 10.3892/or.2017.5722] [Cited by in Crossref: 34] [Cited by in F6Publishing: 39] [Article Influence: 6.8] [Reference Citation Analysis]
71 Haga Y, Kanda T, Nakamura M, Nakamoto S, Sasaki R, Takahashi K, Wu S, Yokosuka O. Overexpression of c-Jun contributes to sorafenib resistance in human hepatoma cell lines. PLoS One 2017;12:e0174153. [PMID: 28323861 DOI: 10.1371/journal.pone.0174153] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
72 Hong TH, Jeena MT, Kim OH, Kim KH, Choi HJ, Lee KH, Hong HE, Ryu JH, Kim SJ. Application of self-assembly peptides targeting the mitochondria as a novel treatment for sorafenib-resistant hepatocellular carcinoma cells. Sci Rep 2021;11:874. [PMID: 33441650 DOI: 10.1038/s41598-020-79536-z] [Reference Citation Analysis]
73 Li L, Cheng L, Sa R, Qiu X, Chen L. Real-world insights into the efficacy and safety of tyrosine kinase inhibitors against thyroid cancers. Crit Rev Oncol Hematol 2022;:103624. [PMID: 35150866 DOI: 10.1016/j.critrevonc.2022.103624] [Reference Citation Analysis]
74 Liepelt A, Tacke F. Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases. American Journal of Physiology-Gastrointestinal and Liver Physiology 2016;311:G203-9. [DOI: 10.1152/ajpgi.00193.2016] [Cited by in Crossref: 39] [Cited by in F6Publishing: 45] [Article Influence: 6.5] [Reference Citation Analysis]
75 Dai J, Huang Q, Niu K, Wang B, Li Y, Dai C, Chen Z, Tao K, Dai J. Sestrin 2 confers primary resistance to sorafenib by simultaneously activating AKT and AMPK in hepatocellular carcinoma. Cancer Med 2018;7:5691-703. [PMID: 30311444 DOI: 10.1002/cam4.1826] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
76 Cai H, Yang Y, Peng F, Liu Y, Fu X, Ji B. Gold nanoparticles-loaded anti-miR221 enhances antitumor effect of sorafenib in hepatocellular carcinoma cells. Int J Med Sci 2019;16:1541-8. [PMID: 31839741 DOI: 10.7150/ijms.37427] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
77 Sang L, Wang XM, Xu DY, Zhao WJ. Bioinformatics analysis of aberrantly methylated-differentially expressed genes and pathways in hepatocellular carcinoma. World J Gastroenterol 2018; 24(24): 2605-2616 [PMID: 29962817 DOI: 10.3748/wjg.v24.i24.2605] [Cited by in CrossRef: 29] [Cited by in F6Publishing: 28] [Article Influence: 7.3] [Reference Citation Analysis]
78 Zheng N, Liu W, Li B, Nie H, Liu J, Cheng Y, Wang J, Dong H, Jia L. Co-delivery of sorafenib and metapristone encapsulated by CXCR4-targeted PLGA-PEG nanoparticles overcomes hepatocellular carcinoma resistance to sorafenib. J Exp Clin Cancer Res 2019;38:232. [PMID: 31151472 DOI: 10.1186/s13046-019-1216-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
79 Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Ishige N. Proliferation of sphere-forming hepatocellular carcinoma cells is suppressed in a medium without glucose and arginine, but with galactose and ornithine. Oncol Lett 2017;13:1264-8. [PMID: 28454244 DOI: 10.3892/ol.2017.5565] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
80 Tang J, Sui CJ, Wang DF, Lu XY, Luo GJ, Zhao Q, Lian QY, Jeong S, Lin XM, Zhu YJ, Zheng B, Wu R, Wang Q, Liu XL, Liu JF, Xia Q, Wu G, Gu J, Wang HY, Chen L. Targeted sequencing reveals the mutational landscape responsible for sorafenib therapy in advanced hepatocellular carcinoma. Theranostics 2020;10:5384-97. [PMID: 32373219 DOI: 10.7150/thno.41616] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
81 Shao W, Zhu W, Lin J, Luo M, Lin Z, Lu L, Jia H, Qin L, Lu M, Chen J. Liver X Receptor Agonism Sensitizes a Subset of Hepatocellular Carcinoma to Sorafenib by Dual-Inhibiting MET and EGFR. Neoplasia 2020;22:1-9. [PMID: 31751859 DOI: 10.1016/j.neo.2019.08.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
82 Han TS, Ban HS, Hur K, Cho HS. The Epigenetic Regulation of HCC Metastasis. Int J Mol Sci 2018;19:E3978. [PMID: 30544763 DOI: 10.3390/ijms19123978] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
83 Gao X, Wang Y, Li Y, Wang Y, Yan M, Sun H, Chen S, Pan X. Huganpian, a traditional chinese medicine, inhibits liver cancer growth in vitro and in vivo by inducing autophagy and cell cycle arrest. Biomed Pharmacother 2019;120:109469. [PMID: 31698319 DOI: 10.1016/j.biopha.2019.109469] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
84 Yang PM, Lin LS, Liu TP. Sorafenib Inhibits Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) in Hepatocellular Carcinoma Cells. Biomolecules 2020;10:E117. [PMID: 31936661 DOI: 10.3390/biom10010117] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
85 Faivre S, Rimassa L, Finn RS. Molecular therapies for HCC: Looking outside the box. J Hepatol. 2020;72:342-352. [PMID: 31954496 DOI: 10.1016/j.jhep.2019.09.010] [Cited by in Crossref: 90] [Cited by in F6Publishing: 97] [Article Influence: 90.0] [Reference Citation Analysis]
86 Jin L, Liu WR, Tian MX, Jiang XF, Wang H, Zhou PY, Ding ZB, Peng YF, Dai Z, Qiu SJ, Zhou J, Fan J, Shi YH. CCL24 contributes to HCC malignancy via RhoB- VEGFA-VEGFR2 angiogenesis pathway and indicates poor prognosis. Oncotarget 2017;8:5135-48. [PMID: 28042950 DOI: 10.18632/oncotarget.14095] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
87 Beretta GL, Cassinelli G, Pennati M, Zuco V, Gatti L. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. Eur J Med Chem. 2017;142:271-289. [PMID: 28851502 DOI: 10.1016/j.ejmech.2017.07.062] [Cited by in Crossref: 76] [Cited by in F6Publishing: 77] [Article Influence: 15.2] [Reference Citation Analysis]
88 Xiao Y, Sun L, Fu Y, Huang Y, Zhou R, Hu X, Zhou P, Quan J, Li N, Fan XG. High mobility group box 1 promotes sorafenib resistance in HepG2 cells and in vivo. BMC Cancer. 2017;17:857. [PMID: 29246127 DOI: 10.1186/s12885-017-3868-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
89 Spiegelberg D, Mortensen ACL, Palupi KD, Micke P, Wong J, Vojtesek B, Lane DP, Nestor M. The Novel Anti-cMet Antibody seeMet 12 Potentiates Sorafenib Therapy and Radiotherapy in a Colorectal Cancer Model. Front Oncol 2020;10:1717. [PMID: 33014851 DOI: 10.3389/fonc.2020.01717] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
90 Zhou Y, Li Y, Zhou T, Zheng J, Li S, Li HB. Dietary Natural Products for Prevention and Treatment of Liver Cancer. Nutrients. 2016;8:156. [PMID: 26978396 DOI: 10.3390/nu8030156] [Cited by in Crossref: 99] [Cited by in F6Publishing: 88] [Article Influence: 16.5] [Reference Citation Analysis]
91 Niu Y, Tang G, Wu X, Wu C. LncRNA NEAT1 modulates sorafenib resistance in hepatocellular carcinoma through regulating the miR-149-5p/AKT1 axis. Saudi J Gastroenterol 2020. [PMID: 32461380 DOI: 10.4103/sjg.SJG_4_20] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
92 Xu L, Tong T, Wang Z, Qiang Y, Ma F, Ma X. Identification of Hub Genes and Analysis of Prognostic Values in Hepatocellular Carcinoma by Bioinformatics Analysis. Am J Med Sci 2020;359:226-34. [PMID: 32200915 DOI: 10.1016/j.amjms.2020.01.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
93 Shrestha R, Bridle KR, Cao L, Crawford DHG, Jayachandran A. Dual Targeting of Sorafenib-Resistant HCC-Derived Cancer Stem Cells. Curr Oncol 2021;28:2150-72. [PMID: 34208001 DOI: 10.3390/curroncol28030200] [Reference Citation Analysis]
94 Chou LF, Chen CY, Yang WH, Chen CC, Chang JL, Leu YL, Liou MJ, Wang TH. Suppression of Hepatocellular Carcinoma Progression through FOXM1 and EMT Inhibition via Hydroxygenkwanin-Induced miR-320a Expression. Biomolecules 2019;10:E20. [PMID: 31877715 DOI: 10.3390/biom10010020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
95 Cheng Z, Ni Q, Qin L, Shi Y. MicroRNA-92b augments sorafenib resistance in hepatocellular carcinoma via targeting PTEN to activate PI3K/AKT/mTOR signaling. Braz J Med Biol Res 2021;54:e10390. [PMID: 34076140 DOI: 10.1590/1414-431X2020e10390] [Reference Citation Analysis]
96 Alves de Souza CE, Pires ADRA, Cardoso CR, Carlos RM, Cadena SMSC, Acco A. Antineoplastic activity of a novel ruthenium complex against human hepatocellular carcinoma (HepG2) and human cervical adenocarcinoma (HeLa) cells. Heliyon 2020;6:e03862. [PMID: 32405548 DOI: 10.1016/j.heliyon.2020.e03862] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
97 Thaiss W, Kaufmann S, Kloth C, Nikolaou K, Bösmüller H, Horger M. VEGFR-2 expression in HCC, dysplastic and regenerative liver nodules, and correlation with pre-biopsy Dynamic Contrast Enhanced CT. European Journal of Radiology 2016;85:2036-41. [DOI: 10.1016/j.ejrad.2016.09.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
98 Liang C, Dong Z, Cai X, Shen J, Xu Y, Zhang M, Li H, Yu W, Chen W. Hypoxia induces sorafenib resistance mediated by autophagy via activating FOXO3a in hepatocellular carcinoma. Cell Death Dis 2020;11:1017. [PMID: 33250518 DOI: 10.1038/s41419-020-03233-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
99 Qian YY, Liu ZS, Yan HJ, Yuan YF, Levenson AS, Li K. Pterostilbene inhibits MTA1/HDAC1 complex leading to PTEN acetylation in hepatocellular carcinoma. Biomed Pharmacother 2018;101:852-9. [PMID: 29635894 DOI: 10.1016/j.biopha.2018.03.022] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
100 Zhang H, Zhang W, Jiang L, Chen Y. Recent advances in systemic therapy for hepatocellular carcinoma. Biomark Res 2022;10:3. [PMID: 35000616 DOI: 10.1186/s40364-021-00350-4] [Reference Citation Analysis]
101 Donisi C, Puzzoni M, Ziranu P, Lai E, Mariani S, Saba G, Impera V, Dubois M, Persano M, Migliari M, Pretta A, Liscia N, Astara G, Scartozzi M. Immune Checkpoint Inhibitors in the Treatment of HCC. Front Oncol 2020;10:601240. [PMID: 33585218 DOI: 10.3389/fonc.2020.601240] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
102 Yang J, Cui R, Liu Y. MicroRNA-212-3p inhibits paclitaxel resistance through regulating epithelial-mesenchymal transition, migration and invasion by targeting ZEB2 in human hepatocellular carcinoma. Oncol Lett 2020;20:23. [PMID: 32774496 DOI: 10.3892/ol.2020.11884] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
103 Feng J, Dai W, Mao Y, Wu L, Li J, Chen K, Yu Q, Kong R, Li S, Zhang J, Ji J, Wu J, Mo W, Xu X, Guo C. Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res 2020;39:24. [PMID: 32000827 DOI: 10.1186/s13046-020-1528-x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
104 Wu J, Chai H, Li F, Ren Q, Gu Y. SETD1A augments sorafenib primary resistance via activating YAP in hepatocellular carcinoma. Life Sci 2020;260:118406. [PMID: 32918976 DOI: 10.1016/j.lfs.2020.118406] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
105 Lin JC, Yang PM, Liu TP. PERK/ATF4-Dependent ZFAS1 Upregulation Is Associated with Sorafenib Resistance in Hepatocellular Carcinoma Cells. Int J Mol Sci 2021;22:5848. [PMID: 34072570 DOI: 10.3390/ijms22115848] [Reference Citation Analysis]
106 Shen H, Liu B, Xu J, Zhang B, Wang Y, Shi L, Cai X. Circular RNAs: characteristics, biogenesis, mechanisms and functions in liver cancer. J Hematol Oncol 2021;14:134. [PMID: 34461958 DOI: 10.1186/s13045-021-01145-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
107 Pan X, Wang C, Zhang T. Physcion Synergistically Enhances the Cytotoxicity of Sorafenib in Hepatocellular Carcinoma. Anat Rec (Hoboken) 2019;302:2171-7. [PMID: 31120198 DOI: 10.1002/ar.24179] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
108 Prieto-Domínguez N, Ordóñez R, Fernández A, Méndez-Blanco C, Baulies A, Garcia-Ruiz C, Fernández-Checa JC, Mauriz JL, González-Gallego J. Melatonin-induced increase in sensitivity of human hepatocellular carcinoma cells to sorafenib is associated with reactive oxygen species production and mitophagy. J Pineal Res 2016;61:396-407. [PMID: 27484637 DOI: 10.1111/jpi.12358] [Cited by in Crossref: 80] [Cited by in F6Publishing: 86] [Article Influence: 13.3] [Reference Citation Analysis]
109 Xu GL, Ni CF, Liang HS, Xu YH, Wang WS, Shen J, Li MM, Zhu XL. Upregulation of PD-L1 expression promotes epithelial-to-mesenchymal transition in sorafenib-resistant hepatocellular carcinoma cells. Gastroenterol Rep (Oxf) 2020;8:390-8. [PMID: 33163195 DOI: 10.1093/gastro/goaa049] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
110 Méndez-Blanco C, Fondevila F, Fernández-Palanca P, García-Palomo A, Pelt JV, Verslype C, González-Gallego J, Mauriz JL. Stabilization of Hypoxia-Inducible Factors and BNIP3 Promoter Methylation Contribute to Acquired Sorafenib Resistance in Human Hepatocarcinoma Cells. Cancers (Basel) 2019;11:E1984. [PMID: 31835431 DOI: 10.3390/cancers11121984] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
111 Yin Y, Sun M, Zhan X, Wu C, Geng P, Sun X, Wu Y, Zhang S, Qin J, Zhuang Z, Liu Y. EGFR signaling confers resistance to BET inhibition in hepatocellular carcinoma through stabilizing oncogenic MYC. J Exp Clin Cancer Res 2019;38:83. [PMID: 30770740 DOI: 10.1186/s13046-019-1082-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
112 Mehmood T, Maryam A, Zhang H, Li Y, Khan M, Ma T. Deoxyelephantopin induces apoptosis in HepG2 cells via oxidative stress, NF-κB inhibition and mitochondrial dysfunction. Biofactors 2017;43:63-72. [PMID: 27628030 DOI: 10.1002/biof.1324] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
113 Xu J, Wan Z, Tang M, Lin Z, Jiang S, Ji L, Gorshkov K, Mao Q, Xia S, Cen D, Zheng J, Liang X, Cai X. N6-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling. Mol Cancer 2020;19:163. [PMID: 33222692 DOI: 10.1186/s12943-020-01281-8] [Cited by in Crossref: 19] [Cited by in F6Publishing: 27] [Article Influence: 9.5] [Reference Citation Analysis]
114 Ying X, Tu J, Wang W, Li X, Xu C, Ji J. FGFR2-BICC1: A Subtype Of FGFR2 Oncogenic Fusion Variant In Cholangiocarcinoma And The Response To Sorafenib. Onco Targets Ther. 2019;12:9303-9307. [PMID: 31807010 DOI: 10.2147/ott.s218796] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
115 Personeni N, Pressiani T, Rimassa L. Cabozantinib in patients with hepatocellular carcinoma failing previous treatment with sorafenib. Future Oncology 2019;15:2449-62. [DOI: 10.2217/fon-2019-0026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
116 Tang Y, Chen J, Li J, Zheng Y, Zhong X, Huang S, Chen B, Peng B, Zou X, Chen X. Pristimerin synergistically sensitizes conditionally reprogrammed patient derived-primary hepatocellular carcinoma cells to sorafenib through endoplasmic reticulum stress and ROS generation by modulating Akt/FoxO1/p27kip1 signaling pathway. Phytomedicine 2021;86:153563. [PMID: 33951569 DOI: 10.1016/j.phymed.2021.153563] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
117 Ceballos MP, Rigalli JP, Ceré LI, Semeniuk M, Catania VA, Ruiz ML. ABC Transporters: Regulation and Association with Multidrug Resistance in Hepatocellular Carcinoma and Colorectal Carcinoma. Curr Med Chem 2019;26:1224-50. [PMID: 29303075 DOI: 10.2174/0929867325666180105103637] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
118 Keating GM. Sorafenib: A Review in Hepatocellular Carcinoma. Target Oncol. 2017;12:243-253. [PMID: 28299600 DOI: 10.1007/s11523-017-0484-7] [Cited by in Crossref: 95] [Cited by in F6Publishing: 107] [Article Influence: 19.0] [Reference Citation Analysis]
119 Ma XL, Sun YF, Wang BL, Shen MN, Zhou Y, Chen JW, Hu B, Gong ZJ, Zhang X, Cao Y, Pan BS, Zhou J, Fan J, Guo W, Yang XR. Sphere-forming culture enriches liver cancer stem cells and reveals Stearoyl-CoA desaturase 1 as a potential therapeutic target. BMC Cancer 2019;19:760. [PMID: 31370822 DOI: 10.1186/s12885-019-5963-z] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 7.7] [Reference Citation Analysis]
120 Cheng JS, Tsai WL, Liu PF, Goan YG, Lin CW, Tseng HH, Lee CH, Shu CW. The MAP3K7-mTOR Axis Promotes the Proliferation and Malignancy of Hepatocellular Carcinoma Cells. Front Oncol 2019;9:474. [PMID: 31214512 DOI: 10.3389/fonc.2019.00474] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
121 Han H, Lin T, Fang Z, Zhou G. RBM23 Drives Hepatocellular Carcinoma by Activating NF-κB Signaling Pathway. Biomed Res Int 2021;2021:6697476. [PMID: 33791378 DOI: 10.1155/2021/6697476] [Reference Citation Analysis]
122 Zhang Y, Tie Q, Bao Z, Shao Z, Zhang L. Inhibition of miR-15a-5p Promotes the Chemoresistance to Pirarubicin in Hepatocellular Carcinoma via Targeting eIF4E. Comput Math Methods Med 2021;2021:6468405. [PMID: 34812269 DOI: 10.1155/2021/6468405] [Reference Citation Analysis]
123 Liu H, Wang M, Liang N, Guan L. PDCD2 sensitizes HepG2 cells to sorafenib by suppressing epithelial‑mesenchymal transition. Mol Med Rep 2019;19:2173-9. [PMID: 30664177 DOI: 10.3892/mmr.2019.9860] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
124 Cheng CC, Chao WT, Liao CC, Shih JH, Lai YS, Hsu YH, Liu YH. The Roles Of Angiogenesis And Cancer Stem Cells In Sorafenib Drug Resistance In Hepatocellular Carcinoma. Onco Targets Ther 2019;12:8217-27. [PMID: 31632072 DOI: 10.2147/OTT.S217468] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
125 Song Y, Gao P, Ding H, Xu G, Hu Y, Tong Y, Xin W, Zhang L, Wu M, Fang L. Underlying mechanism of sorafenib resistance in hepatocellular carcinoma: a bioinformatics study based on validated resistance-related genes. J Gastrointest Oncol 2021;12:1895-904. [PMID: 34532137 DOI: 10.21037/jgo-21-377] [Reference Citation Analysis]
126 Guo Q, Yu DY, Yang ZF, Liu DY, Cao HQ, Liao XW. IGFBP2 upregulates ZEB1 expression and promotes hepatocellular carcinoma progression through NF-κB signaling pathway. Dig Liver Dis 2020;52:573-81. [PMID: 31818638 DOI: 10.1016/j.dld.2019.10.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
127 He J, Li G, Liu X, Ma L, Zhang J, Zheng S, Wang J, Liu J. Mesencephalic Astrocyte-Derived Neurotrophic Factor, a Prognostic Factor of Cholangiocarcinoma, Affects Sorafenib Sensitivity of Cholangiocarcinoma Cells by Deteriorating ER Stress. Onco Targets Ther 2020;13:9169-84. [PMID: 32982305 DOI: 10.2147/OTT.S245575] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
128 Wang J, Wei W, Tang Q, Lu L, Luo Z, Li W, Lu Y, Pu J. Oxysophocarpine suppresses hepatocellular carcinoma growth and sensitizes the therapeutic blockade of anti-Lag-3 via reducing FGL1 expression. Cancer Med 2020;9:7125-36. [PMID: 32810392 DOI: 10.1002/cam4.3151] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
129 Liu ZL, Liu JH, Staiculescu D, Chen J. Combination of molecularly targeted therapies and immune checkpoint inhibitors in the new era of unresectable hepatocellular carcinoma treatment. Ther Adv Med Oncol 2021;13:17588359211018026. [PMID: 34104226 DOI: 10.1177/17588359211018026] [Reference Citation Analysis]
130 Dai B, Shi X, Ma N, Ma W, Zhang Y, Yang T, Zhang J, He L. HMQ-T-B10 induces human liver cell apoptosis by competitively targeting EphrinB2 and regulating its pathway. J Cell Mol Med 2018;22:5231-43. [PMID: 30589500 DOI: 10.1111/jcmm.13729] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
131 Wu Y, Liu Z, Xu X. Molecular subtyping of hepatocellular carcinoma: A step toward precision medicine. Cancer Commun (Lond) 2020;40:681-93. [PMID: 33290597 DOI: 10.1002/cac2.12115] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
132 Wang C, Tong Y, Wen Y, Cai J, Guo H, Huang L, Xu M, Feng M, Chen X, Zhang J, Wu H, Kong X, Xia Q. Hepatocellular Carcinoma‐Associated Protein TD26 Interacts and Enhances Sterol Regulatory Element‐Binding Protein 1 Activity to Promote Tumor Cell Proliferation and Growth. Hepatology 2018;68:1833-50. [DOI: 10.1002/hep.30030] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]