BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sun JW, Fan R, Wang Q, Wang QQ, Jia XZ, Ma HB. Identify abnormal functional connectivity of resting state networks in Autism spectrum disorder and apply to machine learning-based classification. Brain Res 2021;1757:147299. [PMID: 33516816 DOI: 10.1016/j.brainres.2021.147299] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Li C, Zhang T, Li J. Identifying autism spectrum disorder in resting-state fNIRS signals based on multiscale entropy and a two-branch deep learning network. Journal of Neuroscience Methods 2023;383:109732. [DOI: 10.1016/j.jneumeth.2022.109732] [Reference Citation Analysis]
2 Escobar-ipuz F, Torres A, García-jiménez M, Basar C, Cascón J, Mateo J. Prediction of patients with idiopathic generalized epilepsy from healthy controls using machine learning from scalp EEG recordings. Brain Research 2022. [DOI: 10.1016/j.brainres.2022.148131] [Reference Citation Analysis]
3 Qiao J, Wang R, Liu H, Xu G, Wang Z. Brain disorder prediction with dynamic multivariate spatio-temporal features: Application to Alzheimer’s disease and autism spectrum disorder. Front Aging Neurosci 2022;14:912895. [DOI: 10.3389/fnagi.2022.912895] [Reference Citation Analysis]
4 Jiang W, Liu S, Zhang H, Sun X, Wang S, Zhao J, Yan J. CNNG: A Convolutional Neural Networks With Gated Recurrent Units for Autism Spectrum Disorder Classification. Front Aging Neurosci 2022;14:948704. [DOI: 10.3389/fnagi.2022.948704] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 George B, Chandra Blessie E. Effective Classification of Autism Spectrum Disorder Using Adaptive Support Vector Machine. Lecture Notes in Electrical Engineering 2022. [DOI: 10.1007/978-981-16-7985-8_44] [Reference Citation Analysis]
6 Feng W, Liu G, Zeng K, Zeng M, Liu Y. A review of methods for classification and recognition of ASD using fMRI data. J Neurosci Methods 2021;:109456. [PMID: 34954253 DOI: 10.1016/j.jneumeth.2021.109456] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Rafiee F, Rezvani Habibabadi R, Motaghi M, Yousem DM, Yousem IJ. Brain MRI in Autism Spectrum Disorder: Narrative Review and Recent Advances. J Magn Reson Imaging 2021. [PMID: 34626442 DOI: 10.1002/jmri.27949] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Jia H, Wu X, Wang E. Aberrant dynamic functional connectivity features within default mode network in patients with autism spectrum disorder: evidence from dynamical conditional correlation. Cogn Neurodyn. [DOI: 10.1007/s11571-021-09723-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]