BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Belgio E, Johnson MP, Jurić S, Ruban AV. Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime-both the maximum and the nonphotochemically quenched. Biophys J 2012;102:2761-71. [PMID: 22735526 DOI: 10.1016/j.bpj.2012.05.004] [Cited by in Crossref: 89] [Cited by in F6Publishing: 86] [Article Influence: 8.9] [Reference Citation Analysis]
Number Citing Articles
1 Chmeliov J, Trinkunas G, van Amerongen H, Valkunas L. Excitation migration in fluctuating light-harvesting antenna systems. Photosynth Res 2016;127:49-60. [DOI: 10.1007/s11120-015-0083-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
2 Murchie EH, Harbinson J. Non-Photochemical Fluorescence Quenching Across Scales: From Chloroplasts to Plants to Communities. In: Demmig-adams B, Garab G, Adams Iii W, Govindjee, editors. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Dordrecht: Springer Netherlands; 2014. pp. 553-82. [DOI: 10.1007/978-94-017-9032-1_25] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
3 Ruban AV, Johnson MP. Visualizing the dynamic structure of the plant photosynthetic membrane. Nat Plants 2015;1:15161. [PMID: 27251532 DOI: 10.1038/nplants.2015.161] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 7.3] [Reference Citation Analysis]
4 Gómez R, Figueroa N, Melzer M, Hajirezaei MR, Carrillo N, Lodeyro AF. Photosynthetic characterization of flavodoxin-expressing tobacco plants reveals a high light acclimation-like phenotype. Biochim Biophys Acta Bioenerg 2020;1861:148211. [PMID: 32315624 DOI: 10.1016/j.bbabio.2020.148211] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
5 Fujii R, Yamano N, Hashimoto H, Misawa N, Ifuku K. Photoprotection vs. Photoinhibition of Photosystem II in Transplastomic Lettuce (Lactuca sativa) Dominantly Accumulating Astaxanthin. Plant Cell Physiol 2016;57:1518-29. [PMID: 26644463 DOI: 10.1093/pcp/pcv187] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
6 Belgio E, Kapitonova E, Chmeliov J, Duffy CD, Ungerer P, Valkunas L, Ruban AV. Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps. Nat Commun 2014;5:4433. [PMID: 25014663 DOI: 10.1038/ncomms5433] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 7.8] [Reference Citation Analysis]
7 Roden JJ, Bennett DI, Whaley KB. Long-range energy transport in photosystem II. J Chem Phys 2016;144:245101. [PMID: 27369543 DOI: 10.1063/1.4953243] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 3.6] [Reference Citation Analysis]
8 Wientjes E, van Amerongen H, Croce R. Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. J Phys Chem B 2013;117:11200-8. [PMID: 23534376 DOI: 10.1021/jp401663w] [Cited by in Crossref: 75] [Cited by in F6Publishing: 69] [Article Influence: 8.3] [Reference Citation Analysis]
9 Killi D, Haworth M. Diffusive and Metabolic Constraints to Photosynthesis in Quinoa during Drought and Salt Stress. Plants (Basel) 2017;6:E49. [PMID: 29039809 DOI: 10.3390/plants6040049] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 3.4] [Reference Citation Analysis]
10 Van Wittenberghe S, Alonso L, Verrelst J, Hermans I, Valcke R, Veroustraete F, Moreno J, Samson R. A field study on solar-induced chlorophyll fluorescence and pigment parameters along a vertical canopy gradient of four tree species in an urban environment. Sci Total Environ 2014;466-467:185-94. [PMID: 23895782 DOI: 10.1016/j.scitotenv.2013.07.024] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
11 Belgio E, Duffy CD, Ruban AV. Switching light harvesting complex II into photoprotective state involves the lumen-facing apoprotein loop. Phys Chem Chem Phys 2013;15:12253-61. [PMID: 23771239 DOI: 10.1039/c3cp51925b] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 3.2] [Reference Citation Analysis]
12 Kaňa R, Kotabová E, Šedivá B, Kuthanová Trsková E. Photoprotective strategies in the motile cryptophyte alga Rhodomonas salina-role of non-photochemical quenching, ions, photoinhibition, and cell motility. Folia Microbiol (Praha) 2019;64:691-703. [PMID: 31352667 DOI: 10.1007/s12223-019-00742-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
13 Petrou K, Belgio E, Ruban AV. pH sensitivity of chlorophyll fluorescence quenching is determined by the detergent/protein ratio and the state of LHCII aggregation. Biochim Biophys Acta 2014;1837:1533-9. [PMID: 24321504 DOI: 10.1016/j.bbabio.2013.11.018] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
14 Balevičius V Jr, Fox KF, Bricker WP, Jurinovich S, Prandi IG, Mennucci B, Duffy CDP. Fine control of chlorophyll-carotenoid interactions defines the functionality of light-harvesting proteins in plants. Sci Rep 2017;7:13956. [PMID: 29066753 DOI: 10.1038/s41598-017-13720-6] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 6.4] [Reference Citation Analysis]
15 Croce R, van Amerongen H. Natural strategies for photosynthetic light harvesting. Nat Chem Biol 2014;10:492-501. [PMID: 24937067 DOI: 10.1038/nchembio.1555] [Cited by in Crossref: 512] [Cited by in F6Publishing: 406] [Article Influence: 64.0] [Reference Citation Analysis]
16 Snellenburg JJ, Johnson MP, Ruban AV, van Grondelle R, van Stokkum IHM. A four state parametric model for the kinetics of the non-photochemical quenching in Photosystem II. Biochim Biophys Acta Bioenerg 2017;1858:854-64. [PMID: 28801049 DOI: 10.1016/j.bbabio.2017.08.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
17 Ware MA, Giovagnetti V, Belgio E, Ruban AV. PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems. J Photochem Photobiol B 2015;152:301-7. [PMID: 26233261 DOI: 10.1016/j.jphotobiol.2015.07.016] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 4.6] [Reference Citation Analysis]
18 Giovagnetti V, Ware MA, Ruban AV. Assessment of the impact of photosystem I chlorophyll fluorescence on the pulse-amplitude modulated quenching analysis in leaves of Arabidopsis thaliana. Photosynth Res 2015;125:179-89. [DOI: 10.1007/s11120-015-0087-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
19 van Amerongen H, Croce R. Light harvesting in photosystem II. Photosynth Res 2013;116:251-63. [PMID: 23595278 DOI: 10.1007/s11120-013-9824-3] [Cited by in Crossref: 107] [Cited by in F6Publishing: 96] [Article Influence: 11.9] [Reference Citation Analysis]
20 Colpo A, Baldisserotto C, Pancaldi S, Sabia A, Ferroni L. Photosystem II photoinhibition and photoprotection in a lycophyte, Selaginella martensii. Physiol Plant 2021;:e13604. [PMID: 34811759 DOI: 10.1111/ppl.13604] [Reference Citation Analysis]
21 Iwai M, Yokono M, Kurokawa K, Ichihara A, Nakano A. Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures. Sci Rep 2016;6:29940. [PMID: 27416900 DOI: 10.1038/srep29940] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
22 Crisafi E, Pandit A. Disentangling protein and lipid interactions that control a molecular switch in photosynthetic light harvesting. Biochimica et Biophysica Acta (BBA) - Biomembranes 2017;1859:40-7. [DOI: 10.1016/j.bbamem.2016.10.010] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 5.6] [Reference Citation Analysis]
23 Kato Y, Hyodo K, Sakamoto W. The Photosystem II Repair Cycle Requires FtsH Turnover through the EngA GTPase. Plant Physiol 2018;178:596-611. [PMID: 30131421 DOI: 10.1104/pp.18.00652] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
24 Meagher E, Rangsrikitphoti P, Faridi B, Zamzam G, Durnford DG. Photoacclimation to high-light stress in Chlamydomonas reinhardtii during conditional senescence relies on generating pH-dependent, high-quenching centres. Plant Physiol Biochem 2021;158:136-45. [PMID: 33307425 DOI: 10.1016/j.plaphy.2020.12.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Chmeliov J, Gelzinis A, Franckevičius M, Tutkus M, Saccon F, Ruban AV, Valkunas L. Aggregation-Related Nonphotochemical Quenching in the Photosynthetic Membrane. J Phys Chem Lett 2019;10:7340-6. [PMID: 31710503 DOI: 10.1021/acs.jpclett.9b03100] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
26 Laisk A, Oja V. Variable fluorescence of closed photochemical reaction centers. Photosynth Res 2020;143:335-46. [PMID: 31960223 DOI: 10.1007/s11120-020-00712-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
27 Tian W, Chen J, Deng L, Yao M, Yang H, Zheng Y, Cui R, Sha G. An irradiation density dependent energy relaxation in plant photosystem II antenna assembly. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2015;1847:286-93. [DOI: 10.1016/j.bbabio.2014.11.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
28 Janik E, Bednarska J, Zubik M, Sowinski K, Luchowski R, Grudzinski W, Gruszecki WI. Is It Beneficial for the Major Photosynthetic Antenna Complex of Plants To Form Trimers? J Phys Chem B 2015;119:8501-8. [DOI: 10.1021/acs.jpcb.5b04005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
29 Karlický V, Kmecová Materová Z, Kurasová I, Nezval J, Štroch M, Garab G, Špunda V. Accumulation of geranylgeranylated chlorophylls in the pigment-protein complexes of Arabidopsis thaliana acclimated to green light: effects on the organization of light-harvesting complex II and photosystem II functions. Photosynth Res 2021;149:233-52. [PMID: 33948813 DOI: 10.1007/s11120-021-00827-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Cetner M, Kalaji H, Borucki W, Kowalczyk K. Special issue in honour of Prof. Reto J. Strasser - Phosphorus deficiency affects the I-step of chlorophyll a fluorescence induction curve of radish. Photosynt 2020;58:671-81. [DOI: 10.32615/ps.2020.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
31 Tian Y, Sacharz J, Ware MA, Zhang H, Ruban AV. Effects of periodic photoinhibitory light exposure on physiology and productivity of Arabidopsis plants grown under low light. J Exp Bot 2017;68:4249-62. [PMID: 28922753 DOI: 10.1093/jxb/erx213] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
32 Zubik M, Luchowski R, Kluczyk D, Grudzinski W, Maksim M, Nosalewicz A, Gruszecki WI. Recycling of Energy Dissipated as Heat Accounts for High Activity of Photosystem II. J Phys Chem Lett 2020;11:3242-8. [PMID: 32271019 DOI: 10.1021/acs.jpclett.0c00486] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Belgio E, Trsková E, Kotabová E, Ewe D, Prášil O, Kaňa R. High light acclimation of Chromera velia points to photoprotective NPQ. Photosynth Res 2018;135:263-74. [PMID: 28405863 DOI: 10.1007/s11120-017-0385-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 3.2] [Reference Citation Analysis]
34 Nicol L, Croce R. The PsbS protein and low pH are necessary and sufficient to induce quenching in the light-harvesting complex of plants LHCII. Sci Rep 2021;11:7415. [PMID: 33795805 DOI: 10.1038/s41598-021-86975-9] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
35 Croce R, van Amerongen H. Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. Science 2020;369:eaay2058. [PMID: 32820091 DOI: 10.1126/science.aay2058] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 14.0] [Reference Citation Analysis]
36 van Amerongen H, Chmeliov J. Instantaneous switching between different modes of non-photochemical quenching in plants. Consequences for increasing biomass production. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2020;1861:148119. [DOI: 10.1016/j.bbabio.2019.148119] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
37 Akhtar P, Görföl F, Garab G, Lambrev PH. Dependence of chlorophyll fluorescence quenching on the lipid-to-protein ratio in reconstituted light-harvesting complex II membranes containing lipid labels. Chemical Physics 2019;522:242-8. [DOI: 10.1016/j.chemphys.2019.03.012] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 6.7] [Reference Citation Analysis]
38 Janik E, Bednarska J, Zubik M, Puzio M, Luchowski R, Grudzinski W, Mazur R, Garstka M, Maksymiec W, Kulik A, Dietler G, Gruszecki WI. Molecular architecture of plant thylakoids under physiological and light stress conditions: a study of lipid-light-harvesting complex II model membranes. Plant Cell 2013;25:2155-70. [PMID: 23898030 DOI: 10.1105/tpc.113.113076] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 6.6] [Reference Citation Analysis]
39 Sugliani M, Abdelkefi H, Ke H, Bouveret E, Robaglia C, Caffarri S, Field B. An Ancient Bacterial Signaling Pathway Regulates Chloroplast Function to Influence Growth and Development in Arabidopsis. Plant Cell 2016;28:661-79. [PMID: 26908759 DOI: 10.1105/tpc.16.00045] [Cited by in Crossref: 41] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
40 Duffy CD, Ruban AV. Dissipative pathways in the photosystem-II antenna in plants. Journal of Photochemistry and Photobiology B: Biology 2015;152:215-26. [DOI: 10.1016/j.jphotobiol.2015.09.011] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 5.9] [Reference Citation Analysis]
41 Janik-Zabrotowicz E, Arczewska M, Zubik M, Terpilowski K, Skrzypek TH, Swietlicka I, Gagos M. Cremophor EL Nano-Emulsion Monomerizes Chlorophyll a in Water Medium. Biomolecules 2019;9:E881. [PMID: 31888249 DOI: 10.3390/biom9120881] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
42 Shukla MK, Watanabe A, Wilson S, Giovagnetti V, Moustafa EI, Minagawa J, Ruban AV. A novel method produces native light-harvesting complex II aggregates from the photosynthetic membrane revealing their role in nonphotochemical quenching. J Biol Chem 2020;295:17816-26. [PMID: 33454016 DOI: 10.1074/jbc.RA120.016181] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Saccon F, Giovagnetti V, Shukla MK, Ruban AV. Rapid regulation of photosynthetic light harvesting in the absence of minor antenna and reaction centre complexes. J Exp Bot 2020;71:3626-37. [PMID: 32149343 DOI: 10.1093/jxb/eraa126] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
44 Giovagnetti V, Ruban AV. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta Bioenerg 2017;1858:218-30. [PMID: 27989819 DOI: 10.1016/j.bbabio.2016.12.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
45 Michoux F, Ahmad N, Wei ZY, Belgio E, Ruban AV, Nixon PJ. Testing the Role of the N-Terminal Tail of D1 in the Maintenance of Photosystem II in Tobacco Chloroplasts. Front Plant Sci 2016;7:844. [PMID: 27446098 DOI: 10.3389/fpls.2016.00844] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
46 Ruban AV. Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage. Plant Physiol 2016;170:1903-16. [PMID: 26864015 DOI: 10.1104/pp.15.01935] [Cited by in Crossref: 367] [Cited by in F6Publishing: 288] [Article Influence: 61.2] [Reference Citation Analysis]
47 Chmeliov J, Gelzinis A, Songaila E, Augulis R, Duffy CD, Ruban AV, Valkunas L. The nature of self-regulation in photosynthetic light-harvesting antenna. Nat Plants 2016;2:16045. [PMID: 27243647 DOI: 10.1038/nplants.2016.45] [Cited by in Crossref: 79] [Cited by in F6Publishing: 60] [Article Influence: 13.2] [Reference Citation Analysis]
48 Janik E, Bednarska J, Zubik M, Sowinski K, Luchowski R, Grudzinski W, Matosiuk D, Gruszecki WI. The xanthophyll cycle pigments, violaxanthin and zeaxanthin, modulate molecular organization of the photosynthetic antenna complex LHCII. Arch Biochem Biophys 2016;592:1-9. [PMID: 26773208 DOI: 10.1016/j.abb.2016.01.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
49 Lei R, Jiang H, Hu F, Yan J, Zhu S. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection. Plant Cell Rep 2017;36:327-41. [PMID: 27904946 DOI: 10.1007/s00299-016-2083-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
50 Fox KF, Bricker WP, Lo C, Duffy CDP. Distortions of the Xanthophylls Caused by Interactions with Neighboring Pigments and the LHCII Protein Are Crucial for Studying Energy Transfer Pathways within the Complex. J Phys Chem B 2015;119:15550-60. [DOI: 10.1021/acs.jpcb.5b08941] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
51 Kaňa R, Kotabová E, Kopečná J, Trsková E, Belgio E, Sobotka R, Ruban AV. Violaxanthin inhibits nonphotochemical quenching in light-harvesting antenna of Chromera velia. FEBS Lett 2016;590:1076-85. [PMID: 26988983 DOI: 10.1002/1873-3468.12130] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
52 Townsend AJ, Saccon F, Giovagnetti V, Wilson S, Ungerer P, Ruban AV. The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes. Biochim Biophys Acta Bioenerg 2018;1859:666-75. [PMID: 29548769 DOI: 10.1016/j.bbabio.2018.03.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
53 Natali A, Gruber JM, Dietzel L, Stuart MC, van Grondelle R, Croce R. Light-harvesting Complexes (LHCs) Cluster Spontaneously in Membrane Environment Leading to Shortening of Their Excited State Lifetimes. J Biol Chem 2016;291:16730-9. [PMID: 27252376 DOI: 10.1074/jbc.M116.730101] [Cited by in Crossref: 54] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
54 Lemos MA, Sárniková K, Bot F, Anese M, Hungerford G. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs. Biosensors (Basel) 2015;5:367-97. [PMID: 26132136 DOI: 10.3390/bios5030367] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
55 Fox KF, Balevičius V, Chmeliov J, Valkunas L, Ruban AV, Duffy CDP. The carotenoid pathway: what is important for excitation quenching in plant antenna complexes? Phys Chem Chem Phys 2017;19:22957-68. [DOI: 10.1039/c7cp03535g] [Cited by in Crossref: 30] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
56 Xu DQ, Chen Y, Chen GY. Light-harvesting regulation from leaf to molecule with the emphasis on rapid changes in antenna size. Photosynth Res 2015;124:137-58. [PMID: 25773873 DOI: 10.1007/s11120-015-0115-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
57 Kuthanová Trsková E, Belgio E, Yeates AM, Sobotka R, Ruban AV, Kana R. Antenna proton sensitivity determines photosynthetic light harvesting strategy. J Exp Bot 2018;69:4483-93. [PMID: 29955883 DOI: 10.1093/jxb/ery240] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
58 Wilson S, Ruban AV. Enhanced NPQ affects long-term acclimation in the spring ephemeral Berteroa incana. Biochim Biophys Acta Bioenerg 2020;1861:148014. [PMID: 30880080 DOI: 10.1016/j.bbabio.2019.03.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
59 Kaňa R, Govindjee. Role of Ions in the Regulation of Light-Harvesting. Front Plant Sci 2016;7:1849. [PMID: 28018387 DOI: 10.3389/fpls.2016.01849] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
60 Lambrev PH, Akhtar P. Macroorganisation and flexibility of thylakoid membranes. Biochemical Journal 2019;476:2981-3018. [DOI: 10.1042/bcj20190080] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
61 Wang X, Wang Y, Ling A, Guo Z, Asim M, Song F, Wang Q, Sun Y, Khan R, Yan H, Shi Y. Rationale: Photosynthesis of Vascular Plants in Dim Light. Front Plant Sci 2020;11:573881. [PMID: 33329633 DOI: 10.3389/fpls.2020.573881] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
62 Farooq S, Chmeliov J, Wientjes E, Koehorst R, Bader A, Valkunas L, Trinkunas G, van Amerongen H. Dynamic feedback of the photosystem II reaction centre on photoprotection in plants. Nat Plants 2018;4:225-31. [PMID: 29610535 DOI: 10.1038/s41477-018-0127-8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
63 Kuthanová Trsková E, Bína D, Santabarbara S, Sobotka R, Kaňa R, Belgio E. Isolation and characterization of CAC antenna proteins and photosystem I supercomplex from the cryptophytic alga Rhodomonas salina. Physiol Plant 2019;166:309-19. [PMID: 30677144 DOI: 10.1111/ppl.12928] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
64 Akhtar P, Dorogi M, Pawlak K, Kovács L, Bóta A, Kiss T, Garab G, Lambrev PH. Pigment interactions in light-harvesting complex II in different molecular environments. J Biol Chem 2015;290:4877-86. [PMID: 25525277 DOI: 10.1074/jbc.M114.607770] [Cited by in Crossref: 46] [Cited by in F6Publishing: 17] [Article Influence: 5.8] [Reference Citation Analysis]
65 Opačić M, Durand G, Bosco M, Polidori A, Popot J. Amphipols and Photosynthetic Light-Harvesting Pigment-Protein Complexes. J Membrane Biol 2014;247:1031-41. [DOI: 10.1007/s00232-014-9712-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
66 Crepin A, Cunill-Semanat E, Kuthanová Trsková E, Belgio E, Kaňa R. Antenna Protein Clustering In Vitro Unveiled by Fluorescence Correlation Spectroscopy. Int J Mol Sci 2021;22:2969. [PMID: 33804002 DOI: 10.3390/ijms22062969] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Ware MA, Belgio E, Ruban AV. Photoprotective capacity of non-photochemical quenching in plants acclimated to different light intensities. Photosynth Res 2015;126:261-74. [PMID: 25702085 DOI: 10.1007/s11120-015-0102-4] [Cited by in Crossref: 64] [Cited by in F6Publishing: 53] [Article Influence: 9.1] [Reference Citation Analysis]
68 Ruban AV, Wilson S. The Mechanism of Non-photochemical Quenching in Plants: Localisation and Driving Forces. Plant Cell Physiol 2020:pcaa155. [PMID: 33351147 DOI: 10.1093/pcp/pcaa155] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
69 Farooq S, Chmeliov J, Trinkunas G, Valkunas L, van Amerongen H. Is There Excitation Energy Transfer between Different Layers of Stacked Photosystem-II-Containing Thylakoid Membranes? J Phys Chem Lett 2016;7:1406-10. [DOI: 10.1021/acs.jpclett.6b00474] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
70 Mascoli V, Liguori N, Xu P, Roy LM, van Stokkum IH, Croce R. Capturing the Quenching Mechanism of Light-Harvesting Complexes of Plants by Zooming in on the Ensemble. Chem 2019;5:2900-12. [DOI: 10.1016/j.chempr.2019.08.002] [Cited by in Crossref: 27] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
71 Belgio E, Ungerer P, Ruban AV. Light-harvesting superstructures of green plant chloroplasts lacking photosystems. Plant Cell Environ 2015;38:2035-47. [PMID: 25737144 DOI: 10.1111/pce.12528] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
72 Pawlak K, Paul S, Liu C, Reus M, Yang C, Holzwarth AR. On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes. Photosynth Res 2020;144:195-208. [PMID: 32266611 DOI: 10.1007/s11120-020-00740-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
73 Dall'Osto L, Cazzaniga S, Bressan M, Paleček D, Židek K, Niyogi KK, Fleming GR, Zigmantas D, Bassi R. Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes. Nat Plants 2017;3:17033. [PMID: 28394312 DOI: 10.1038/nplants.2017.33] [Cited by in Crossref: 82] [Cited by in F6Publishing: 74] [Article Influence: 16.4] [Reference Citation Analysis]
74 Tian L, Dinc E, Croce R. LHCII Populations in Different Quenching States Are Present in the Thylakoid Membranes in a Ratio that Depends on the Light Conditions. J Phys Chem Lett 2015;6:2339-44. [PMID: 26266614 DOI: 10.1021/acs.jpclett.5b00944] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 4.1] [Reference Citation Analysis]
75 Jia T, Ito H, Hu X, Tanaka A. Accumulation of the NON-YELLOW COLORING 1 protein of the chlorophyll cycle requires chlorophyll b in Arabidopsis thaliana. Plant J 2015;81:586-96. [PMID: 25557327 DOI: 10.1111/tpj.12753] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
76 Townsend AJ, Ware MA, Ruban AV. Dynamic interplay between photodamage and photoprotection in photosystem II. Plant Cell Environ 2018;41:1098-112. [PMID: 29210070 DOI: 10.1111/pce.13107] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
77 Sacharz J, Giovagnetti V, Ungerer P, Mastroianni G, Ruban AV. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Nat Plants 2017;3:16225. [PMID: 28134919 DOI: 10.1038/nplants.2016.225] [Cited by in Crossref: 80] [Cited by in F6Publishing: 68] [Article Influence: 16.0] [Reference Citation Analysis]
78 Fox KF, Ünlü C, Balevičius V, Ramdour BN, Kern C, Pan X, Li M, van Amerongen H, Duffy CD. A possible molecular basis for photoprotection in the minor antenna proteins of plants. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2018;1859:471-81. [DOI: 10.1016/j.bbabio.2018.03.015] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
79 Cruz JA, Savage LJ, Zegarac R, Hall CC, Satoh-Cruz M, Davis GA, Kovac WK, Chen J, Kramer DM. Dynamic Environmental Photosynthetic Imaging Reveals Emergent Phenotypes. Cell Syst 2016;2:365-77. [PMID: 27336966 DOI: 10.1016/j.cels.2016.06.001] [Cited by in Crossref: 69] [Cited by in F6Publishing: 55] [Article Influence: 17.3] [Reference Citation Analysis]
80 Giovagnetti V, Ruban AV, Griffiths H. The mechanism of regulation of photosystem I cross-section in the pennate diatom Phaeodactylum tricornutum. Journal of Experimental Botany 2021;72:561-75. [DOI: 10.1093/jxb/eraa478] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
81 Iwai M, Yokono M, Nakano A. Visualizing structural dynamics of thylakoid membranes. Sci Rep 2014;4:3768. [PMID: 24442007 DOI: 10.1038/srep03768] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
82 Tikkanen M, Gollan PJ, Mekala NR, Isojärvi J, Aro EM. Light-harvesting mutants show differential gene expression upon shift to high light as a consequence of photosynthetic redox and reactive oxygen species metabolism. Philos Trans R Soc Lond B Biol Sci 2014;369:20130229. [PMID: 24591716 DOI: 10.1098/rstb.2013.0229] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
83 Janik E, Bednarska J, Sowinski K, Luchowski R, Zubik M, Grudzinski W, Gruszecki WI. Light-induced formation of dimeric LHCII. Photosynth Res 2017;132:265-76. [PMID: 28425025 DOI: 10.1007/s11120-017-0387-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
84 Turan S, Kumar S, Cornish K. Photosynthetic response of in vitro guayule plants in low and high lights and the role of non-photochemical quenching in plant acclimation. Industrial Crops and Products 2014;54:266-71. [DOI: 10.1016/j.indcrop.2014.01.022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
85 Ruban AV. Evolution under the sun: optimizing light harvesting in photosynthesis. J Exp Bot 2015;66:7-23. [PMID: 25336689 DOI: 10.1093/jxb/eru400] [Cited by in Crossref: 114] [Cited by in F6Publishing: 90] [Article Influence: 14.3] [Reference Citation Analysis]
86 Gruber JM, Xu P, Chmeliov J, Krüger TPJ, Alexandre MTA, Valkunas L, Croce R, van Grondelle R. Dynamic quenching in single photosystem II supercomplexes. Phys Chem Chem Phys 2016;18:25852-60. [DOI: 10.1039/c6cp05493e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
87 Gruber JM, Malý P, Krüger TP, Grondelle RV. From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective. Nanophotonics 2018;7:81-92. [DOI: 10.1515/nanoph-2017-0014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
88 Garab G. Hierarchical organization and structural flexibility of thylakoid membranes. Biochim Biophys Acta 2014;1837:481-94. [PMID: 24333385 DOI: 10.1016/j.bbabio.2013.12.003] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
89 Tian Y, Ungerer P, Zhang H, Ruban AV. Direct impact of the sustained decline in the photosystem II efficiency upon plant productivity at different developmental stages. J Plant Physiol 2017;212:45-53. [PMID: 28260626 DOI: 10.1016/j.jplph.2016.10.017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]