BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Apaydın S, Török M. Sulfonamide derivatives as multi-target agents for complex diseases. Bioorganic & Medicinal Chemistry Letters 2019;29:2042-50. [DOI: 10.1016/j.bmcl.2019.06.041] [Cited by in Crossref: 52] [Cited by in F6Publishing: 32] [Article Influence: 17.3] [Reference Citation Analysis]
Number Citing Articles
1 Omelian TV, Dobrydnev AV, Utchenko OY, Ostapchuk EN, Konovalova IS, Volovenko YM. The reactivity of tetrahydropyrrolo[1,2-b]isothiazol-3(2H)-one 1,1-dioxides. Monatsh Chem 2020;151:1759-72. [DOI: 10.1007/s00706-020-02694-3] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
2 Chinn AJ, Sedillo K, Doyle AG. Phosphine/Photoredox Catalyzed Anti-Markovnikov Hydroamination of Olefins with Primary Sulfonamides via α-Scission from Phosphoranyl Radicals. J Am Chem Soc 2021;143:18331-8. [PMID: 34672192 DOI: 10.1021/jacs.1c09484] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Meira Menezes T, Assis C, Lacerda Cintra AJ, Silva Dos Santos RC, Martins do Vale WK, Max Gomes Martins R, de Souza Bezerra R, Seabra GM, Li C, Neves JL. Binding Mechanism between Acetylcholinesterase and Drugs Pazopanib and Lapatinib: Biochemical and Biophysical Studies. ACS Chem Neurosci 2021;12:4500-11. [PMID: 34808043 DOI: 10.1021/acschemneuro.1c00521] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Swain SS, Paidesetty SK, Padhy RN. Phytochemical conjugation as a potential semisynthetic approach toward reactive and reuse of obsolete sulfonamides against pathogenic bacteria. Drug Dev Res 2021;82:149-66. [PMID: 33025605 DOI: 10.1002/ddr.21746] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
5 Bouzaheur A, Bouchoucha A, Si Larbi K, Zaater S. Experimental and DFT studies of a novel Schiff base sulfonamide derivative ligand and its palladium (II) and platinum (IV) complexes: antimicrobial activity, cytotoxicity, and molecular docking study. Journal of Molecular Structure 2022;1261:132811. [DOI: 10.1016/j.molstruc.2022.132811] [Reference Citation Analysis]
6 Meşeli T, Doğan ŞD, Gündüz MG, Kökbudak Z, Skaro Bogojevic S, Noonan T, Vojnovic S, Wolber G, Nikodinovic-runic J. Design, synthesis, antibacterial activity evaluation and molecular modeling studies of new sulfonamides containing a sulfathiazole moiety. New J Chem 2021;45:8166-77. [DOI: 10.1039/d1nj00150g] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
7 Mcguire RT, Simon CM, Yadav AA, Ferguson MJ, Stradiotto M. Nickel‐Catalyzed Cross‐Coupling of Sulfonamides With (Hetero)aryl Chlorides. Angew Chem Int Ed 2020;59:8952-6. [DOI: 10.1002/anie.202002392] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
8 Sheena Mary Y, Shyma Mary Y, Krátký M, Vinsova J, Baraldi C, Gamberini MC. DFT, molecular docking and SERS (concentration and solvent dependant) investigations of a methylisoxazole derivative with potential antimicrobial activity. Journal of Molecular Structure 2021;1232:130034. [DOI: 10.1016/j.molstruc.2021.130034] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
9 Lanfranco A, Moro R, Azzi E, Deagostino A, Renzi P. Unconventional approaches for the introduction of sulfur-based functional groups. Org Biomol Chem 2021;19:6926-57. [PMID: 34333579 DOI: 10.1039/d1ob01091c] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Schöbel J, Passia MT, Wolter NA, Puttreddy R, Rissanen K, Bolm C. 1,2,6-Thiadiazine 1-Oxides: Unsaturated Three-Dimensional S,N-Heterocycles from Sulfonimidamides. Org Lett 2020;22:2702-6. [DOI: 10.1021/acs.orglett.0c00666] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
11 Stenfors BA, Staples RJ, Biros SM, Ngassa FN. Crystal structure of 1-[(4-methylbenzene)sulfonyl]pyrrolidine. Acta Crystallogr E Crystallogr Commun 2020;76:452-5. [PMID: 32148893 DOI: 10.1107/S205698902000208X] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Danish M, Bibi A, Akhtar A, Noreen N, Batool F, Zahra N, Arshad MN, Asiri AM. Theoretical and Experimental Investigations of N ‐ and O ‐Alkylated Sulfonamides: Density Functional Theory, Hirshfeld Surface Analysis, and Molecular Docking Studies. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202103209] [Reference Citation Analysis]
13 Markowicz-Piasecka M, Sikora J, Zajda A, Huttunen KM. Novel halogenated sulfonamide biguanides with anti-coagulation properties. Bioorg Chem 2020;94:103444. [PMID: 31776031 DOI: 10.1016/j.bioorg.2019.103444] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Türkeş C, Akocak S, Işık M, Lolak N, Taslimi P, Durgun M, Gülçin İ, Budak Y, Beydemir Ş. Novel inhibitors with sulfamethazine backbone: synthesis and biological study of multi-target cholinesterases and α-glucosidase inhibitors. J Biomol Struct Dyn 2021;:1-13. [PMID: 33950796 DOI: 10.1080/07391102.2021.1916599] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
15 Zhang X, Jia Y. Recent Advances in β-lactam Derivatives as Potential Anticancer Agents. Curr Top Med Chem 2020;20:1468-80. [PMID: 32148196 DOI: 10.2174/1568026620666200309161444] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Zhao F, Wang Y, Jin G. Sulfamide-substituted-BODIPY based fluorescence drugs: Synthesis, spectral characteristics, molecular docking, and bioactivity. Arabian Journal of Chemistry 2021;14:103395. [DOI: 10.1016/j.arabjc.2021.103395] [Reference Citation Analysis]
17 Tang YL, Li YK, Li MX, Gao H, Yang XB, Mao ZW. Synthesis of New Piperazine Substituted Chalcone Sulphonamides as Antibacterial Agents. Curr Org Synth 2020;17:136-43. [PMID: 32418516 DOI: 10.2174/1570179417666191227115207] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Mahmood A, Munir R, Zia-Ur-Rehman M, Javid N, Shah SJA, Noreen L, Sindhu TA, Iqbal J. Synthesis of Sulfonamide Tethered (Hetero)aryl ethylidenes as Potential Inhibitors of P2X Receptors: A Promising Way for the Treatment of Pain and Inflammation. ACS Omega 2021;6:25062-75. [PMID: 34604685 DOI: 10.1021/acsomega.1c04302] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 White DH, Noble A, Booker-milburn KI, Aggarwal VK. Diastereoselective Photoredox-Catalyzed [3 + 2] Cycloadditions of N -Sulfonyl Cyclopropylamines with Electron-Deficient Olefins. Org Lett 2021;23:3038-42. [DOI: 10.1021/acs.orglett.1c00711] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Poole AT, Sitko CA, Le C, Naus CC, Hill BM, Bushnell EAC, Chen VC. Examination of sulfonamide-based inhibitors of MMP3 using the conditioned media of invasive glioma cells. J Enzyme Inhib Med Chem 2020;35:672-81. [PMID: 32156166 DOI: 10.1080/14756366.2020.1715387] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Akocak S, Taslimi P, Lolak N, Işık M, Durgun M, Budak Y, Türkeş C, Gülçin İ, Beydemir Ş. Synthesis, Characterization, and Inhibition Study of Novel Substituted Phenylureido Sulfaguanidine Derivatives as α‐Glycosidase and Cholinesterase Inhibitors. Chem Biodiversity 2021;18. [DOI: 10.1002/cbdv.202000958] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
22 Demir-Yazıcı K, Apaydın ÇB, Soylu-Eter Ö, Özsoy N, Karalı N. Synthesis, molecular modeling and cholinesterase inhibitory effects of 2-indolinone-based hydrazinecarbothioamides. Future Med Chem 2021;13:2133-51. [PMID: 34755546 DOI: 10.4155/fmc-2021-0018] [Reference Citation Analysis]
23 Liu H, Zhang B, Zhao W, Yu X, Zhu W, Xia C, Zhou Y. Base-Mediated Coupling Reactions of Benzenesulfonyl Azides with Proline: Synthesis of Proline-Derived Benzenesulfonamides. ACS Omega 2021;6:34796-804. [PMID: 34963962 DOI: 10.1021/acsomega.1c05331] [Reference Citation Analysis]
24 Zhang M, Yu M, Wang Z, Liu Y, Wang Q. Rapid Access to Aliphatic Sulfonamides. Org Lett 2022. [PMID: 35616536 DOI: 10.1021/acs.orglett.2c01236] [Reference Citation Analysis]
25 Zajda A, Sikora J, Huttunen KM, Markowicz-Piasecka M. Structural Comparison of Sulfonamide-Based Derivatives That Can Improve Anti-Coagulation Properties of Metformin. Int J Mol Sci 2022;23:4132. [PMID: 35456961 DOI: 10.3390/ijms23084132] [Reference Citation Analysis]
26 Sarkar D, Olejniczak ET, Phan J, Coker JA, Sai J, Arnold A, Beesetty Y, Waterson AG, Fesik SW. Discovery of Sulfonamide-Derived Agonists of SOS1-Mediated Nucleotide Exchange on RAS Using Fragment-Based Methods. J Med Chem 2020;63:8325-37. [PMID: 32673492 DOI: 10.1021/acs.jmedchem.0c00511] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Dombrowski AW, Aguirre AL, Shrestha A, Sarris KA, Wang Y. The Chosen Few: Parallel Library Reaction Methodologies for Drug Discovery. J Org Chem 2021. [PMID: 34780177 DOI: 10.1021/acs.joc.1c01427] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Guerra WD, Lucena-Agell D, Hortigüela R, Rossi RA, Fernando Díaz J, Padrón JM, Barolo SM. Design, Synthesis, and in vitro Evaluation of Tubulin-Targeting Dibenzothiazines with Antiproliferative Activity as a Novel Heterocycle Building Block. ChemMedChem 2021. [PMID: 34231318 DOI: 10.1002/cmdc.202100383] [Reference Citation Analysis]
29 Fernández-Villa D, Aguilar MR, Rojo L. Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications. Int J Mol Sci 2019;20:E4996. [PMID: 31601031 DOI: 10.3390/ijms20204996] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
30 Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. A Broad-Spectrum Catalytic Amidation of Sulfonyl Fluorides and Fluorosulfates*. Angew Chem Int Ed Engl 2021;60:7397-404. [PMID: 33337566 DOI: 10.1002/anie.202013976] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
31 Song F, Li Z, Bian Y, Huo X, Fang J, Shao L, Zhou M. Indole/isatin-containing hybrids as potential antibacterial agents. Arch Pharm (Weinheim) 2020;353:e2000143. [PMID: 32667714 DOI: 10.1002/ardp.202000143] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Makhaeva GF, Kovaleva NV, Boltneva NP, Lushchekina SV, Astakhova TY, Rudakova EV, Proshin AN, Serkov IV, Radchenko EV, Palyulin VA, Bachurin SO, Richardson RJ. New Hybrids of 4-Amino-2,3-polymethylene-quinoline and p-Tolylsulfonamide as Dual Inhibitors of Acetyl- and Butyrylcholinesterase and Potential Multifunctional Agents for Alzheimer's Disease Treatment. Molecules 2020;25:E3915. [PMID: 32867324 DOI: 10.3390/molecules25173915] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
33 Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2021. [PMID: 34751568 DOI: 10.1021/acs.chemrev.1c00384] [Reference Citation Analysis]
34 Sacramento M, Reis AS, Martins CC, Luchese C, Wilhelm EA, Alves D. Synthesis and Evaluation of Antioxidant, Anti-Edematogenic and Antinociceptive Properties of Selenium-Sulfa Compounds. ChemMedChem 2021. [PMID: 34854233 DOI: 10.1002/cmdc.202100507] [Reference Citation Analysis]
35 Markowicz-Piasecka M, Sadkowska A, Sikora J, Broncel M, Huttunen KM. Novel Sulfonamide-Based Analogs of Metformin Exert Promising Anti-Coagulant Effects without Compromising Glucose-Lowering Activity. Pharmaceuticals (Basel) 2020;13:E323. [PMID: 33096688 DOI: 10.3390/ph13100323] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Mahapatra M, Paidesetty SK, Bishoyi AK, Padhy RN. Design, molecular docking study of synthesised N-heteroaryl substituted gallamide derivatives and their antibacterial assessment. Nat Prod Res 2022;:1-9. [PMID: 35105197 DOI: 10.1080/14786419.2021.2022662] [Reference Citation Analysis]
37 Abebe FA, Hopkins MD, Vodnala SN, Sheaff RJ, Lamar AA. Development of a Rapid In Vitro Screening Assay Using Metabolic Inhibitors to Detect Highly Selective Anticancer Agents. ACS Omega 2021;6:18333-43. [PMID: 34308064 DOI: 10.1021/acsomega.1c02203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Maji M, Acharya S, Bhattacharya I, Gupta A, Mukherjee A. Effect of an Imidazole-Containing Schiff Base of an Aromatic Sulfonamide on the Cytotoxic Efficacy of N,N-Coordinated Half-Sandwich Ruthenium(II) p -Cymene Complexes. Inorg Chem 2021;60:4744-54. [DOI: 10.1021/acs.inorgchem.0c03706] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
39 Zhu H, Dronamraju V, Xie W, More SS. Sulfur-containing therapeutics in the treatment of Alzheimer's disease. Med Chem Res 2021;30:305-52. [PMID: 33613018 DOI: 10.1007/s00044-020-02687-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Talha A, Mourhly A, Tachallait H, Driowya M, El Hamidi A, Arshad S, Karrouchi K, Arsalane S, Bougrin K. One-pot four-component tandem synthesis of novel sulfonamide-1, 2, 3-triazoles catalyzed by reusable copper (II)-adsorbed on mesoporous silica under ultrasound irradiation. Tetrahedron 2021;90:132215. [DOI: 10.1016/j.tet.2021.132215] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Dubey KK, Indu, Sharma M. Reprogramming of antibiotics to combat antimicrobial resistance. Arch Pharm 2020;353:2000168. [DOI: 10.1002/ardp.202000168] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 He H, Liu Z, Wang W, Jiang X. Synthesis and cytotoxic evaluation of halogenated α-exo-methylene-lactones. Bioorg Med Chem 2020;28:115281. [PMID: 31889606 DOI: 10.1016/j.bmc.2019.115281] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
43 Hell SM, Meyer CF, Laudadio G, Misale A, Willis MC, Noël T, Trabanco AA, Gouverneur V. Silyl Radical-Mediated Activation of Sulfamoyl Chlorides Enables Direct Access to Aliphatic Sulfonamides from Alkenes. J Am Chem Soc 2020;142:720-5. [DOI: 10.1021/jacs.9b13071] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 10.7] [Reference Citation Analysis]
44 Li Z, Sun Y, Yang Y, Han Y, Wang T, Chen J, Tsang DC. Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway. Environmental Research 2020;183:109156. [DOI: 10.1016/j.envres.2020.109156] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 14.0] [Reference Citation Analysis]
45 Queda F, Calò S, Gwizdala K, Magalhães JD, Cardoso SM, Chaves S, Piemontese L, Santos MA. Novel Donepezil-Arylsulfonamide Hybrids as Multitarget-Directed Ligands for Potential Treatment of Alzheimer's Disease. Molecules 2021;26:1658. [PMID: 33809771 DOI: 10.3390/molecules26061658] [Reference Citation Analysis]
46 Hopkins MD, Ozmer GL, Witt RC, Brandeburg ZC, Rogers DA, Keating CE, Petcoff PL, Sheaff RJ, Lamar AA. PhI(OAc)2 and iodine-mediated synthesis of N-alkyl sulfonamides derived from polycyclic aromatic hydrocarbon scaffolds and determination of their antibacterial and cytotoxic activities. Org Biomol Chem 2021;19:1133-44. [PMID: 33443507 DOI: 10.1039/d0ob02429e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Chen K, Chen W, Han B, Chen W, Liu M, Wu H. Sequential C-S and S-N Coupling Approach to Sulfonamides. Org Lett 2020;22:1841-5. [PMID: 32073282 DOI: 10.1021/acs.orglett.0c00183] [Cited by in Crossref: 33] [Cited by in F6Publishing: 12] [Article Influence: 16.5] [Reference Citation Analysis]
48 Komissarova NG, Dubovitskii SN, Shitikova OV, Orlov AV. Synthesis of 2-Aminoethanesulfonamides of Betulinic and Betulonic Acids. Chem Nat Compd 2021;:1-5. [PMID: 34276060 DOI: 10.1007/s10600-021-03455-2] [Reference Citation Analysis]
49 Yamali C, Gul HI, Kazaz C, Levent S, Gulcin I. Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes. Bioorganic Chemistry 2020;96:103627. [DOI: 10.1016/j.bioorg.2020.103627] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 10.5] [Reference Citation Analysis]
50 Andriashvili VA, Zhersh S, Tolmachev AA, Grygorenko OO. Synthesis of α-C-Stereochemically Pure Secondary Sulfonamides. J Org Chem 2022. [PMID: 35441519 DOI: 10.1021/acs.joc.2c00480] [Reference Citation Analysis]
51 Sahyon HAE, Ramadan ENM, Althobaiti F, Mashaly MMA. Anti-proliferative effects of the combination of Sulfamethoxazole and Quercetin via caspase3 and NFkB gene regulation: an in vitro and in vivo study. Naunyn Schmiedebergs Arch Pharmacol 2022;395:227-46. [PMID: 34994822 DOI: 10.1007/s00210-021-02174-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Liu TL, Jhou ML, Hsieh CE, Lin CJ, Su HH, Chou CM. Palladium-Catalyzed Intramolecular Allylic Amidation via Decarboxylative Aromatization: Synthesis of N-Allyl-N-aryl Sulfonamides. J Org Chem 2021;86:9084-95. [PMID: 34115505 DOI: 10.1021/acs.joc.1c01065] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
53 Bahadur A, Iqbal S, Muneer S, Alsaab HO, Awwad NS, Ibrahium HA. Synthesis, carbonic anhydrase enzyme inhibition evaluations, and anticancer studies of sulfonamide based thiadiazole derivatives. Bioorg Med Chem Lett 2021;57:128520. [PMID: 34965467 DOI: 10.1016/j.bmcl.2021.128520] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Mcguire RT, Simon CM, Yadav AA, Ferguson MJ, Stradiotto M. Nickel‐Catalyzed Cross‐Coupling of Sulfonamides With (Hetero)aryl Chlorides. Angew Chem 2020;132:9037-41. [DOI: 10.1002/ange.202002392] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
55 Evteev S, Nilov D, Polenova A, Švedas V. Bifunctional Inhibitors of Influenza Virus Neuraminidase: Molecular Design of a Sulfonamide Linker. Int J Mol Sci 2021;22:13112. [PMID: 34884917 DOI: 10.3390/ijms222313112] [Reference Citation Analysis]
56 Mohamed HS, Haiba ME, Mohamed NA, Awad GE, Ahmed NS. New hydronaphthalene-sulfonamide derivatives: Synthesis, antimicrobial evaluation and QSAR study. Journal of Molecular Structure 2021;1246:131108. [DOI: 10.1016/j.molstruc.2021.131108] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Krauskopf F, Truong KN, Rissanen K, Bolm C. 2,3-Dihydro-1,2,6-thiadiazine 1-Oxides by Biginelli-Type Reactions with Sulfonimidamides under Mechanochemical Conditions. Org Lett 2021;23:2699-703. [PMID: 33739844 DOI: 10.1021/acs.orglett.1c00596] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
58 Torabi M, Zolfigol MA, Yarie M, Notash B, Azizian S, Azandaryani MM. Synthesis of triarylpyridines with sulfonate and sulfonamide moieties via a cooperative vinylogous anomeric-based oxidation. Sci Rep 2021;11:16846. [PMID: 34413326 DOI: 10.1038/s41598-021-95830-w] [Reference Citation Analysis]
59 Chauhan LK, Chopra J, Vanangamudi M, Tripathi IP, Bhargava A, Goswami AK, Baroliya PK. Hydroxytriazenes incorporating sulphonamide derivatives: evaluation of antidiabetic, antioxidant, anti-inflammatory activities, and computational study. Mol Divers 2022. [PMID: 35414151 DOI: 10.1007/s11030-022-10420-w] [Reference Citation Analysis]