BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Del Prete S, Vullo D, Osman SM, Alothman Z, Supuran CT, Capasso C. Sulfonamide inhibition profiles of the β-carbonic anhydrase from the pathogenic bacterium Francisella tularensis responsible of the febrile illness tularemia. Bioorganic & Medicinal Chemistry 2017;25:3555-61. [DOI: 10.1016/j.bmc.2017.05.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
Number Citing Articles
1 Alissa SA, Alghulikah HA, Alothman ZA, Osman SM, Del Prete S, Capasso C, Nocentini A, Supuran CT. Phosphonamidates are the first phosphorus-based zinc binding motif to show inhibition of β-class carbonic anhydrases from bacteria, fungi, and protozoa. J Enzyme Inhib Med Chem 2020;35:59-64. [PMID: 31663383 DOI: 10.1080/14756366.2019.1681987] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
2 Supuran CT, Capasso C. Biomedical applications of prokaryotic carbonic anhydrases. Expert Opin Ther Pat 2018;28:745-54. [PMID: 29973089 DOI: 10.1080/13543776.2018.1497161] [Cited by in Crossref: 38] [Cited by in F6Publishing: 46] [Article Influence: 9.5] [Reference Citation Analysis]
3 Angeli A, Ferraroni M, Pinteala M, Maier SS, Simionescu BC, Carta F, Del Prete S, Capasso C, Supuran CT. Crystal Structure of a Tetrameric Type II β-Carbonic Anhydrase from the Pathogenic Bacterium Burkholderia pseudomallei. Molecules 2020;25:E2269. [PMID: 32408533 DOI: 10.3390/molecules25102269] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
4 Supuran CT, Capasso C. An Overview of the Bacterial Carbonic Anhydrases. Metabolites 2017;7:E56. [PMID: 29137134 DOI: 10.3390/metabo7040056] [Cited by in Crossref: 87] [Cited by in F6Publishing: 79] [Article Influence: 17.4] [Reference Citation Analysis]
5 Kocyigit UM, Budak Y, Gürdere MB, Ertürk F, Yencilek B, Taslimi P, Gülçin İ, Ceylan M. Synthesis of chalcone-imide derivatives and investigation of their anticancer and antimicrobial activities, carbonic anhydrase and acetylcholinesterase enzymes inhibition profiles. Archives of Physiology and Biochemistry 2018;124:61-8. [DOI: 10.1080/13813455.2017.1360914] [Cited by in Crossref: 76] [Cited by in F6Publishing: 63] [Article Influence: 15.2] [Reference Citation Analysis]
6 Gulçin İ, Abbasova M, Taslimi P, Huyut Z, Safarova L, Sujayev A, Farzaliyev V, Beydemir Ş, Alwasel SH, Supuran CT. Synthesis and biological evaluation of aminomethyl and alkoxymethyl derivatives as carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2017;32:1174-82. [PMID: 28891347 DOI: 10.1080/14756366.2017.1368019] [Cited by in Crossref: 57] [Cited by in F6Publishing: 55] [Article Influence: 11.4] [Reference Citation Analysis]
7 Angeli A, Del Prete S, Pinteala M, Maier SS, Donald WA, Simionescu BC, Capasso C, Supuran CT. The first activation study of the β-carbonic anhydrases from the pathogenic bacteria Brucella suis and Francisella tularensis with amines and amino acids. J Enzyme Inhib Med Chem 2019;34:1178-85. [PMID: 31282230 DOI: 10.1080/14756366.2019.1630617] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
8 Rogato A, Del Prete S, Nocentini A, Carginale V, Supuran CT, Capasso C. Phaeodactylum tricornutum as a model organism for testing the membrane penetrability of sulphonamide carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2019;34:510-8. [PMID: 30688123 DOI: 10.1080/14756366.2018.1559840] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
9 Kaur J, Cao X, Abutaleb NS, Elkashif A, Graboski AL, Krabill AD, AbdelKhalek AH, An W, Bhardwaj A, Seleem MN, Flaherty DP. Optimization of Acetazolamide-Based Scaffold as Potent Inhibitors of Vancomycin-Resistant Enterococcus. J Med Chem 2020;63:9540-62. [PMID: 32787141 DOI: 10.1021/acs.jmedchem.0c00734] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
10 Rasti B, Mazraedoost S, Panahi H, Falahati M, Attar F. New insights into the selective inhibition of the β-carbonic anhydrases of pathogenic bacteria Burkholderia pseudomallei and Francisella tularensis: a proteochemometrics study. Mol Divers 2019;23:263-73. [PMID: 30120657 DOI: 10.1007/s11030-018-9869-5] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
11 Ahamad S, Hassan MI, Dwivedi N. Designing of phenol-based β-carbonic anhydrase1 inhibitors through QSAR, molecular docking, and MD simulation approach. 3 Biotech 2018;8:256. [PMID: 29765814 DOI: 10.1007/s13205-018-1278-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
12 Akdemir A, Angeli A, Göktaş F, Eraslan Elma P, Karalı N, Supuran CT. Novel 2-indolinones containing a sulfonamide moiety as selective inhibitors of candida β-carbonic anhydrase enzyme. J Enzyme Inhib Med Chem 2019;34:528-31. [PMID: 30724625 DOI: 10.1080/14756366.2018.1564045] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]