BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: El Kihel L, Clément M, Bazin M, Descamps G, Khalid M, Rault S. New lithocholic and chenodeoxycholic piperazinylcarboxamides with antiproliferative and pro-apoptotic effects on human cancer cell lines. Bioorganic & Medicinal Chemistry 2008;16:8737-44. [DOI: 10.1016/j.bmc.2008.07.046] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 1.9] [Reference Citation Analysis]
Number Citing Articles
1 Brandes B, Hoenke S, Schultz C, Deigner HP, Csuk R. Converting bile acids into mitocans. Steroids 2023;189:109148. [PMID: 36414156 DOI: 10.1016/j.steroids.2022.109148] [Reference Citation Analysis]
2 Kaur KK, K. Allahbadia GN, Singh M. Mode of Actions of Bile Acids in Avoidance of Colorectal Cancer Development; and their Therapeutic Applications in Cancers - A Narrative Review. J Pharm Nutr Sci 2022;12:35-53. [DOI: 10.29169/1927-5951.2022.12.04] [Reference Citation Analysis]
3 Cai D, Lou S, Huo S, Yang Y, Gao F, Pi W, Chen K, Wang C, Yang X, Jiao J, Xu B, Wang P, Lei H. Synthesis and biological activity evaluation of podophyllotoxin- linked bile acid derivatives as potential anti-liver cancer agents. Bioorganic Chemistry 2022. [DOI: 10.1016/j.bioorg.2022.106066] [Reference Citation Analysis]
4 Patel S, Challagundla N, Rajput RA, Mishra S. Design, synthesis, characterization and anticancer activity evaluation of deoxycholic acid-chalcone conjugates. Bioorg Chem 2022;127:106036. [PMID: 35878450 DOI: 10.1016/j.bioorg.2022.106036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Jang JY, Im E, Choi YH, Kim ND. Mechanism of Bile Acid-Induced Programmed Cell Death and Drug Discovery against Cancer: A Review. IJMS 2022;23:7184. [DOI: 10.3390/ijms23137184] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Song Y, Sun L, Ma P, Xu L, Xiao P. Dihydromyricetin prevents obesity via regulating bile acid metabolism associated with the farnesoid X receptor in ob/ob mice. Food Funct 2022;13:2491-503. [PMID: 35147634 DOI: 10.1039/d1fo03971g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
7 Sowmithri S, Kumar JS, Mahesh P, Krishnamohan T. Design and Synthesis of Novel Piperazine (2-Chloroethyl)-1-nitrosourea Analogues as Anticancer Agents. Asian J Chem 2022;34:591-596. [DOI: 10.14233/ajchem.2022.23552] [Reference Citation Analysis]
8 Zhang RH, Guo HY, Deng H, Li J, Quan ZS. Piperazine skeleton in the structural modification of natural products: a review. J Enzyme Inhib Med Chem 2021;36:1165-97. [PMID: 34080510 DOI: 10.1080/14756366.2021.1931861] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
9 Karabulut HRF, Karatavuk AO, Ozyildirim H, Doğanlar O, Doğanlar ZB. Synthesis of novel dimeric compounds containing triazole using click method and their selective antiproliferative and proapoptotic potential via mitochondrial apoptosis signaling. Med Chem Res 2020;29:643-655. [DOI: 10.1007/s00044-020-02510-x] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
10 Markov AV, Babich VO, Popadyuk II, Salomatina OV, Logashenko EB, Salakhutdinov NF, Zenkova MA. Novel Derivatives of Deoxycholic Acid Bearing Linear Aliphatic Diamine and Aminoalcohol Moieties and their Cyclic Analogs at the C3 Position: Synthesis and Evaluation of Their In Vitro Antitumor Potential. Molecules 2019;24:E2644. [PMID: 31330911 DOI: 10.3390/molecules24142644] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Čebular K, Božić BĐ, Stavber S. 1,3-Dibromo-5,5-dimethylhydantoin as a Precatalyst for Activation of Carbonyl Functionality. Molecules 2019;24:E2608. [PMID: 31319626 DOI: 10.3390/molecules24142608] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
12 Popadyuk II, Markov AV, Morozova EA, Babich VO, Salomatina OV, Logashenko EB, Zenkova MA, Tolstikova TG, Salakhutdinov NF. Synthesis and evaluation of antitumor, anti-inflammatory and analgesic activity of novel deoxycholic acid derivatives bearing aryl- or hetarylsulfanyl moieties at the C-3 position. Steroids 2017;127:1-12. [PMID: 28887170 DOI: 10.1016/j.steroids.2017.08.016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
13 Popadyuk II, Markov AV, Babich VO, Salomatina OV, Logashenko EB, Zenkova MA, Salakhutdinov NF. Novel derivatives of deoxycholic acid bearing aliphatic or cyclic diamine moieties at the C-3 position: Synthesis and evaluation of anti-proliferative activity. Bioorg Med Chem Lett 2017;27:3755-9. [PMID: 28688958 DOI: 10.1016/j.bmcl.2017.06.072] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
14 Bjedov S, Jakimov D, Pilipović A, Poša M, Sakač M. Antitumor activity of newly synthesized oxo and ethylidene derivatives of bile acids and their amides and oxazolines. Steroids 2017;120:19-25. [DOI: 10.1016/j.steroids.2017.01.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
15 Mao S, Chen H, Yu L, Lv F, Xing Y, Liu T, Xie J, Tang J, Yi Z, Yang F. Novel 3,4- seco bile acid diamides as selective anticancer proliferation and migration agents. European Journal of Medicinal Chemistry 2016;122:574-83. [DOI: 10.1016/j.ejmech.2016.04.055] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
16 Agarwal DS, Anantaraju HS, Sriram D, Yogeeswari P, Nanjegowda SH, Mallu P, Sakhuja R. Synthesis, characterization and biological evaluation of bile acid-aromatic/heteroaromatic amides linked via amino acids as anti-cancer agents. Steroids 2016;107:87-97. [PMID: 26748355 DOI: 10.1016/j.steroids.2015.12.022] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
17 García Liñares G, Antonela Zígolo M, Simonetti L, Longhi SA, Baldessari A. Enzymatic synthesis of bile acid derivatives and biological evaluation against Trypanosoma cruzi. Bioorganic & Medicinal Chemistry 2015;23:4804-14. [DOI: 10.1016/j.bmc.2015.05.035] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
18 do Nascimento PG, Lemos TL, Almeida MC, de Souza JM, Bizerra AM, Santiago GM, da Costa JG, Coutinho HD. Lithocholic acid and derivatives: Antibacterial activity. Steroids. 2015;104:8-15. [PMID: 26216208 DOI: 10.1016/j.steroids.2015.07.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
19 Shaquiquzzaman M, Verma G, Marella A, Akhter M, Akhtar W, Khan MF, Tasneem S, Alam MM. Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem 2015;102:487-529. [PMID: 26310894 DOI: 10.1016/j.ejmech.2015.07.026] [Cited by in Crossref: 108] [Cited by in F6Publishing: 112] [Article Influence: 13.5] [Reference Citation Analysis]
20 Brossard D, Lechevrel M, El Kihel L, Quesnelle C, Khalid M, Moslemi S, Reimund JM. Synthesis and biological evaluation of bile carboxamide derivatives with pro-apoptotic effect on human colon adenocarcinoma cell lines. Eur J Med Chem 2014;86:279-90. [PMID: 25173827 DOI: 10.1016/j.ejmech.2014.07.080] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
21 Brossard D, Zhang Y, Haider SM, Sgobba M, Khalid M, Legay R, Duterque-coquillaud M, Galera P, Rault S, Dallemagne P, Moslemi S, El Kihel L. N-substituted Piperazinopyridylsteroid Derivatives as Abiraterone Analogues Inhibit Growth and Induce Pro-apoptosis in Human Hormone-independent Prostate Cancer Cell Lines. Chem Biol Drug Des 2013;82:620-9. [DOI: 10.1111/cbdd.12195] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
22 Gupta A, Kumar BS, Negi AS. Current status on development of steroids as anticancer agents. J Steroid Biochem Mol Biol 2013;137:242-70. [PMID: 23727548 DOI: 10.1016/j.jsbmb.2013.05.011] [Cited by in Crossref: 149] [Cited by in F6Publishing: 127] [Article Influence: 14.9] [Reference Citation Analysis]
23 Salvador JA, Carvalho JF, Neves MA, Silvestre SM, Leitão AJ, Silva MM, Sá e Melo ML. Anticancer steroids: linking natural and semi-synthetic compounds. Nat Prod Rep 2013;30:324-74. [PMID: 23151898 DOI: 10.1039/c2np20082a] [Cited by in Crossref: 180] [Cited by in F6Publishing: 186] [Article Influence: 18.0] [Reference Citation Analysis]
24 Singh M, Singh A, Kundu S, Bansal S, Bajaj A. Deciphering the role of charge, hydration, and hydrophobicity for cytotoxic activities and membrane interactions of bile acid based facial amphiphiles. Biochim Biophys Acta. 2013;1828:1926-1937. [PMID: 23590996 DOI: 10.1016/j.bbamem.2013.04.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 3.0] [Reference Citation Analysis]
25 Tognolini M, Incerti M, Hassan-Mohamed I, Giorgio C, Russo S, Bruni R, Lelli B, Bracci L, Noberini R, Pasquale EB, Barocelli E, Vicini P, Mor M, Lodola A. Structure-activity relationships and mechanism of action of Eph-ephrin antagonists: interaction of cholanic acid with the EphA2 receptor. ChemMedChem 2012;7:1071-83. [PMID: 22529030 DOI: 10.1002/cmdc.201200102] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 2.5] [Reference Citation Analysis]
26 Farokhi F, Wielgosz-Collin G, Clement M, Kornprobst JM, Barnathan G. Cytotoxicity on human cancer cells of ophidiacerebrosides isolated from the African starfish Narcissia canariensis. Mar Drugs 2010;8:2988-98. [PMID: 21339961 DOI: 10.3390/md8122988] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
27 Boustie J, Tomasi S, Grube M. Bioactive lichen metabolites: alpine habitats as an untapped source. Phytochem Rev 2011;10:287-307. [DOI: 10.1007/s11101-010-9201-1] [Cited by in Crossref: 81] [Cited by in F6Publishing: 81] [Article Influence: 6.2] [Reference Citation Analysis]
28 Sharma R, Majer F, Peta VK, Wang J, Keaveney R, Kelleher D, Long A, Gilmer JF. Bile acid toxicity structure-activity relationships: correlations between cell viability and lipophilicity in a panel of new and known bile acids using an oesophageal cell line (HET-1A). Bioorg Med Chem 2010;18:6886-95. [PMID: 20713311 DOI: 10.1016/j.bmc.2010.07.030] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 3.7] [Reference Citation Analysis]
29 Brossard D, El Kihel L, Clément M, Sebbahi W, Khalid M, Roussakis C, Rault S. Synthesis of bile acid derivatives and in vitro cytotoxic activity with pro-apoptotic process on multiple myeloma (KMS-11), glioblastoma multiforme (GBM), and colonic carcinoma (HCT-116) human cell lines. European Journal of Medicinal Chemistry 2010;45:2912-8. [DOI: 10.1016/j.ejmech.2010.03.016] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 3.2] [Reference Citation Analysis]
30 Hanson JR. Steroids: partial synthesis in medicinal chemistry. Nat Prod Rep 2010;27:887. [DOI: 10.1039/c001262a] [Cited by in Crossref: 83] [Cited by in F6Publishing: 84] [Article Influence: 6.4] [Reference Citation Analysis]