BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Patra P, Das M, Kundu P, Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol Adv 2021;47:107695. [PMID: 33465474 DOI: 10.1016/j.biotechadv.2021.107695] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 34.0] [Reference Citation Analysis]
Number Citing Articles
1 Park J, Kim IJ, Kim SR. Nonconventional Yeasts Engineered Using the CRISPR-Cas System as Emerging Microbial Cell Factories. Fermentation 2022;8:656. [DOI: 10.3390/fermentation8110656] [Reference Citation Analysis]
2 Patra P, Disha B, Kundu P, Das M, Ghosh A. Recent advances in machine learning applications in metabolic engineering. Biotechnology Advances 2022. [DOI: 10.1016/j.biotechadv.2022.108069] [Reference Citation Analysis]
3 Carneiro CVGC, Serra LA, Pacheco TF, Ferreira LMM, Brandão LTD, Freitas MNDM, Trichez D, Almeida JRMD. Advances in Komagataella phaffii Engineering for the Production of Renewable Chemicals and Proteins. Fermentation 2022;8:575. [DOI: 10.3390/fermentation8110575] [Reference Citation Analysis]
4 Cai R, Chen X, Zhang Y, Wang X, Zhou N. Systematic bio-fabrication of aptamers and their applications in engineering biology. Syst Microbiol and Biomanuf 2022. [DOI: 10.1007/s43393-022-00140-5] [Reference Citation Analysis]
5 Beura S, Kundu P, Das AK, Ghosh A. Metagenome-scale community metabolic modelling for understanding the role of gut microbiota in human health. Computers in Biology and Medicine 2022;149:105997. [DOI: 10.1016/j.compbiomed.2022.105997] [Reference Citation Analysis]
6 Zahrl RJ, Prielhofer R, Ata Ö, Baumann K, Mattanovich D, Gasser B. Pushing and pulling proteins into the yeast secretory pathway enhances recombinant protein secretion. Metab Eng 2022:S1096-7176(22)00105-7. [PMID: 36057427 DOI: 10.1016/j.ymben.2022.08.010] [Reference Citation Analysis]
7 Chen M, Xie T, Li H, Zhuang Y, Xia J, Nielsen J. System-level analysis of flux regulation of yeast show that glycolytic flux is controlled by allosteric regulation and enzyme phosphorylation.. [DOI: 10.21203/rs.3.rs-1900686/v1] [Reference Citation Analysis]
8 Lu J, Bi X, Liu Y, Lv X, Li J, Du G, Liu L. In silico cell factory design driven by comprehensive genome-scale metabolic models: development and challenges. Syst Microbiol and Biomanuf 2022. [DOI: 10.1007/s43393-022-00117-4] [Reference Citation Analysis]
9 Li W, Cui L, Mai J, Shi TQ, Lin L, Zhang ZG, Ledesma-Amaro R, Dong W, Ji XJ. Advances in Metabolic Engineering Paving the Way for the Efficient Biosynthesis of Terpenes in Yeasts. J Agric Food Chem 2022. [PMID: 35854404 DOI: 10.1021/acs.jafc.2c03917] [Reference Citation Analysis]
10 Antony JS, Hinz JM, Wyrick JJ. Tips, Tricks, and Potential Pitfalls of CRISPR Genome Editing in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2022;10:924914. [DOI: 10.3389/fbioe.2022.924914] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Kręgiel D, Pawlikowska E, Antolak H, Dziekońska-kubczak U, Pielech-przybylska K. Exploring Use of the Metschnikowia pulcherrima Clade to Improve Properties of Fruit Wines. Fermentation 2022;8:247. [DOI: 10.3390/fermentation8060247] [Reference Citation Analysis]
12 Kumokita R, Bamba T, Inokuma K, Yoshida T, Ito Y, Kondo A, Hasunuma T. Construction of an l-Tyrosine Chassis in Pichia pastoris Enhances Aromatic Secondary Metabolite Production from Glycerol. ACS Synth Biol 2022. [PMID: 35575690 DOI: 10.1021/acssynbio.2c00047] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Das PK, Sahoo A, Dasu VV. Current status, and the developments of hosts and expression systems for the production of recombinant human cytokines. Biotechnol Adv 2022;:107969. [PMID: 35525478 DOI: 10.1016/j.biotechadv.2022.107969] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Shi T, Zeng J, Zhou J, Yu Y, Lu H. Correlation Between Improved Mating Efficiency and Weakened Scaffold-Kinase Interaction in the Mating Pheromone Response Pathway Revealed by Interspecies Complementation. Front Microbiol 2022;13:865829. [DOI: 10.3389/fmicb.2022.865829] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Shen Y, Ke X, Pan Z, Cao L, Liu Z, Zheng Y. Comparative transcriptomic and lipidomic analysis of oleic environment adaptation in Saccharomyces cerevisiae: insight into metabolic reprogramming and lipid membrane expansion. Syst Microbiol and Biomanuf. [DOI: 10.1007/s43393-022-00098-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Ali SS, Al-Tohamy R, Mohamed TM, Mahmoud YA, Ruiz HA, Sun L, Sun J. Could termites be hiding a goldmine of obscure yet promising yeasts for energy crisis solutions based on aromatic wastes? A critical state-of-the-art review. Biotechnol Biofuels Bioprod 2022;15:35. [PMID: 35379342 DOI: 10.1186/s13068-022-02131-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Gong C, Cao L, Fang D, Zhang J, Kumar Awasthi M, Xue D. Genetic manipulation strategies for ethanol production from bioconversion of lignocellulose waste. Bioresour Technol 2022;352:127105. [PMID: 35378286 DOI: 10.1016/j.biortech.2022.127105] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
18 Fenton DA, Świrski M, O’connor PBF, Kiniry SJ, Michel AM, Kufel J, Baranov PV, Morrissey JP. Transcriptional and translational profiling in yeast reveals the use of diverse genome decoding mechanisms to generate functionally distinct proteoforms.. [DOI: 10.1101/2022.03.25.485750] [Reference Citation Analysis]
19 Montini N, Doughty TW, Domenzain I, Fenton DA, Baranov PV, Harrington R, Nielsen J, Siewers V, Morrissey JP. Identification of a novel gene required for competitive growth at high temperature in the thermotolerant yeast Kluyveromyces marxianus. Microbiology (Reading) 2022;168. [PMID: 35333706 DOI: 10.1099/mic.0.001148] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Krujatz F, Dani S, Windisch J, Emmermacher J, Hahn F, Mosshammer M, Murthy S, Steingroewer J, Walther T, Kühl M, Gelinsky M, Lode A. Think outside the box: 3D bioprinting concepts for biotechnological applications – recent developments and future perspectives. Biotechnology Advances 2022. [DOI: 10.1016/j.biotechadv.2022.107930] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
21 Kastberg LLB, Ard R, Jensen MK, Workman CT. Burden Imposed by Heterologous Protein Production in Two Major Industrial Yeast Cell Factories: Identifying Sources and Mitigation Strategies. Front Fungal Biol 2022;3:827704. [DOI: 10.3389/ffunb.2022.827704] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
22 Sun ML, Shi TQ, Lin L, Ledesma-Amaro R, Ji XJ. Advancing Yarrowia lipolytica as a superior biomanufacturing platform by tuning gene expression using promoter engineering. Bioresour Technol 2022;:126717. [PMID: 35031438 DOI: 10.1016/j.biortech.2022.126717] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
23 Kasir D, Besseau S, Clastre M, Oudin A, Hamze M, Courdavault V, Osman M, Papon N. Synthetic Biology in the Candida (CTG) Clade. Synthetic Biology of Yeasts 2022. [DOI: 10.1007/978-3-030-89680-5_12] [Reference Citation Analysis]
24 Das M, Sarnaik A, Patra P, Varman AM, Ghosh A. Biofuel production from renewable feedstocks: Progress through metabolic engineering. Current Developments in Biotechnology and Bioengineering 2022. [DOI: 10.1016/b978-0-323-88504-1.00004-2] [Reference Citation Analysis]
25 Zhao Y, Song B, Li J, Zhang J. Rhodotorula toruloides: an ideal microbial cell factory to produce oleochemicals, carotenoids, and other products. World J Microbiol Biotechnol 2021;38:13. [PMID: 34873661 DOI: 10.1007/s11274-021-03201-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Zhai X, Ji L, Gao J, Zhou YJ. Characterizing methanol metabolism-related promoters for metabolic engineering of Ogataea polymorpha. Appl Microbiol Biotechnol 2021;105:8761-9. [PMID: 34748038 DOI: 10.1007/s00253-021-11665-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
27 Zhou C, Li M, Lu S, Cheng Y, Guo X, He X, Wang Z, He XP. Engineering of cis-Element in Saccharomyces cerevisiae for Efficient Accumulation of Value-Added Compound Squalene via Downregulation of the Downstream Metabolic Flux. J Agric Food Chem 2021;69:12474-84. [PMID: 34662105 DOI: 10.1021/acs.jafc.1c04978] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
28 Alvarez HM, Hernández MA, Lanfranconi MP, Silva RA, Villalba MS. Rhodococcus as Biofactories for Microbial Oil Production. Molecules 2021;26:4871. [PMID: 34443455 DOI: 10.3390/molecules26164871] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
29 Xu B, Li Z, Jiang Y, Chen M, Chen B, Xin F, Dong W, Jiang M. Recent advances in the improvement of bi-directional electron transfer between abiotic/biotic interfaces in electron-assisted biosynthesis system. Biotechnol Adv 2021;:107810. [PMID: 34333092 DOI: 10.1016/j.biotechadv.2021.107810] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Lu H, Kerkhoven EJ, Nielsen J. Multiscale models quantifying yeast physiology: towards a whole-cell model. Trends Biotechnol 2021:S0167-7799(21)00152-9. [PMID: 34303549 DOI: 10.1016/j.tibtech.2021.06.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
31 Madzak C. Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. J Fungi (Basel) 2021;7:548. [PMID: 34356927 DOI: 10.3390/jof7070548] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
32 Poorinmohammad N, Kerkhoven EJ. Systems-level approaches for understanding and engineering of the oleaginous cell factory Yarrowia lipolytica. Biotechnol Bioeng 2021. [PMID: 34129240 DOI: 10.1002/bit.27859] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
33 Banner A, Toogood HS, Scrutton NS. Consolidated Bioprocessing: Synthetic Biology Routes to Fuels and Fine Chemicals. Microorganisms 2021;9:1079. [PMID: 34069865 DOI: 10.3390/microorganisms9051079] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
34 Bertels LK, Fernández Murillo L, Heinisch JJ. The Pentose Phosphate Pathway in Yeasts-More Than a Poor Cousin of Glycolysis. Biomolecules 2021;11:725. [PMID: 34065948 DOI: 10.3390/biom11050725] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
35 De S, Mattanovich D, Ferrer P, Gasser B. Established tools and emerging trends for the production of recombinant proteins and metabolites in Pichia pastoris. Essays Biochem 2021:EBC20200138. [PMID: 33956085 DOI: 10.1042/EBC20200138] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]