BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sosnik A, Menaker Raskin M. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation. Biotechnol Adv 2015;33:1380-92. [PMID: 25597531 DOI: 10.1016/j.biotechadv.2015.01.003] [Cited by in Crossref: 82] [Cited by in F6Publishing: 63] [Article Influence: 11.7] [Reference Citation Analysis]
Number Citing Articles
1 Wang S, Cheng K, Chen K, Xu C, Ma P, Dang G, Yang Y, Lei Q, Huang H, Yu Y, Fang Y, Tang Q, Jiang N, Miao H, Liu F, Zhao X, Li N. Nanoparticle-based medicines in clinical cancer therapy. Nano Today 2022;45:101512. [DOI: 10.1016/j.nantod.2022.101512] [Reference Citation Analysis]
2 Xue Y, Sun J, Xiong S, Chai H, Xin X, Xu G, Liu T. Effect of block sequence of hyperbranched block copolymers on the aggregation behavior, drug solubilization and release property. Journal of Molecular Liquids 2019;278:320-8. [DOI: 10.1016/j.molliq.2019.01.080] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Ellis E, Zhang K, Lin Q, Ye E, Poma A, Battaglia G, Loh XJ, Lee TC. Biocompatible pH-responsive nanoparticles with a core-anchored multilayer shell of triblock copolymers for enhanced cancer therapy. J Mater Chem B 2017;5:4421-5. [PMID: 32263969 DOI: 10.1039/c7tb00654c] [Cited by in Crossref: 52] [Cited by in F6Publishing: 2] [Article Influence: 10.4] [Reference Citation Analysis]
4 Liu R, Zhang J, Zhang D, Wang K, Luan Y. Self-assembling nanoparticles based on cytarabine prodrug for enhanced leukemia treatment. Journal of Molecular Liquids 2018;251:178-84. [DOI: 10.1016/j.molliq.2017.12.086] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
5 Li Z, Liu M, Ke L, Wang L, Wu C, Li C, Li Z, Wu Y. Flexible polymeric nanosized micelles for ophthalmic drug delivery: research progress in the last three years. Nanoscale Adv 2021;3:5240-54. [DOI: 10.1039/d1na00596k] [Reference Citation Analysis]
6 Marcos X, Carrillo-nava E, Pérez-casas S. Interactions between a triblock copolymer and hydroxyethyl cellulose in aqueous solution and their use in the solubilization of Amiodarone. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016;504:86-94. [DOI: 10.1016/j.colsurfa.2016.05.057] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
7 Chan D, Yu AC, Appel EA. Single-Chain Polymeric Nanocarriers: A Platform for Determining Structure–Function Correlations in the Delivery of Molecular Cargo. Biomacromolecules 2017;18:1434-9. [DOI: 10.1021/acs.biomac.7b00249] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
8 Abu Saleh D, Rana U, Higuchi M, Sosnik A. Luminescent amphiphilic nanogels by terpyridine-Zn(II) complexation of polymeric micelles. Materials Today Chemistry 2020;18:100359. [DOI: 10.1016/j.mtchem.2020.100359] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Rashwan AK, Karim N, Xu Y, Xie J, Cui H, Mozafari MR, Chen W. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review. Crit Rev Food Sci Nutr 2021;:1-24. [PMID: 34661483 DOI: 10.1080/10408398.2021.1987858] [Reference Citation Analysis]
10 Zhang J, Chen K, Ding Y, Xin X, Li W, Zhang M, Hu H, Qiao M, Zhao X, Chen D. Self-assembly of pH-responsive dextran-g-poly(lactide-co-glycolide)-g-histidine copolymer micelles for intracellular delivery of paclitaxel and its antitumor activity. RSC Adv 2016;6:23693-701. [DOI: 10.1039/c5ra22463b] [Cited by in Crossref: 18] [Article Influence: 3.0] [Reference Citation Analysis]
11 Zhang Y, Tong D, Che D, Pei B, Xia X, Yuan G, Jin X. Ascorbyl palmitate/d-α-tocopheryl polyethylene glycol 1000 succinate monoester mixed micelles for prolonged circulation and targeted delivery of compound K for antilung cancer therapy in vitro and in vivo. Int J Nanomedicine 2017;12:605-14. [PMID: 28144142 DOI: 10.2147/IJN.S119226] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 3.2] [Reference Citation Analysis]
12 Zhang H, Jiang W, Liu R, Zhang J, Zhang D, Li Z, Luan Y. Rational Design of Metal Organic Framework Nanocarrier-Based Codelivery System of Doxorubicin Hydrochloride/Verapamil Hydrochloride for Overcoming Multidrug Resistance with Efficient Targeted Cancer Therapy. ACS Appl Mater Interfaces 2017;9:19687-97. [DOI: 10.1021/acsami.7b05142] [Cited by in Crossref: 108] [Cited by in F6Publishing: 95] [Article Influence: 21.6] [Reference Citation Analysis]
13 Charlie-Silva I, Feitosa NM, Gomes JMM, Hoyos DCM, Mattioli CC, Eto SF, Fernandes DC, Belo MAA, Silva JO, Barros ALB, Corrêa Junior JD, de Menezes GB, Fukushima HCS, Castro TFD, Borra RC, Pierezan F, de Melo NFS, Fraceto LF. Potential of mucoadhesive nanocapsules in drug release and toxicology in zebrafish. PLoS One 2020;15:e0238823. [PMID: 32970684 DOI: 10.1371/journal.pone.0238823] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Talal J, Abutbul-ionita I, Schlachet I, Danino D, Sosnik A. Amphiphilic Nanoparticle-in-Nanoparticle Drug Delivery Systems Exhibiting Cross-Linked Inorganic Rate-Controlling Domains. Chem Mater 2017;29:873-85. [DOI: 10.1021/acs.chemmater.6b04922] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
15 Toscanini MA, Limeres MJ, Garrido AV, Cagel M, Bernabeu E, Moretton MA, Chiappetta DA, Cuestas ML. Polymeric micelles and nanomedicines: Shaping the future of next generation therapeutic strategies for infectious diseases. Journal of Drug Delivery Science and Technology 2021;66:102927. [DOI: 10.1016/j.jddst.2021.102927] [Reference Citation Analysis]
16 Schattling P, Taipaleenmäki E, Zhang Y, Städler B. A Polymer Chemistry Point of View on Mucoadhesion and Mucopenetration. Macromol Biosci 2017;17. [PMID: 28675773 DOI: 10.1002/mabi.201700060] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 7.0] [Reference Citation Analysis]
17 Li N, Huang C, Luan Y, Song A, Song Y, Garg S. Active targeting co-delivery system based on pH-sensitive methoxy-poly(ethylene glycol)2K-poly(ε-caprolactone)4K-poly(glutamic acid)1K for enhanced cancer therapy. J Colloid Interface Sci 2016;472:90-8. [PMID: 27016914 DOI: 10.1016/j.jcis.2016.03.039] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
18 Sang X, Yang Q, Shi G, Zhang L, Wang D, Ni C. Preparation of pH/redox dual responsive polymeric micelles with enhanced stability and drug controlled release. Mater Sci Eng C Mater Biol Appl 2018;91:727-33. [PMID: 30033307 DOI: 10.1016/j.msec.2018.06.012] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
19 Fathi M, Sahandi Zangabad P, Majidi S, Barar J, Erfan-Niya H, Omidi Y. Stimuli-responsive chitosan-based nanocarriers for cancer therapy. Bioimpacts 2017;7:269-77. [PMID: 29435435 DOI: 10.15171/bi.2017.32] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 6.2] [Reference Citation Analysis]
20 Zhao C, Cai L, Chen H, Tan H, Yan D. Oral biomaterials for intestinal regulation. Engineered Regeneration 2021;2:116-32. [DOI: 10.1016/j.engreg.2021.09.002] [Reference Citation Analysis]
21 Zhang Y, Chan JW, Moretti A, Uhrich KE. Designing polymers with sugar-based advantages for bioactive delivery applications. J Control Release 2015;219:355-68. [PMID: 26423239 DOI: 10.1016/j.jconrel.2015.09.053] [Cited by in Crossref: 66] [Cited by in F6Publishing: 49] [Article Influence: 9.4] [Reference Citation Analysis]
22 Wang C, Wang J, Chen X, Zheng X, Xie Z, Chen L, Chen X. Phenylboronic Acid-Cross-Linked Nanoparticles with Improved Stability as Dual Acid-Responsive Drug Carriers. Macromol Biosci 2017;17:1600227. [DOI: 10.1002/mabi.201600227] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
23 Bukchin A, Sanchez-navarro M, Carrera A, Teixidó M, Carcaboso AM, Giralt E, Sosnik A. Amphiphilic Polymeric Nanoparticles Modified with a Retro-Enantio Peptide Shuttle Target the Brain of Mice. Chem Mater 2020;32:7679-93. [DOI: 10.1021/acs.chemmater.0c01696] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
24 Sosnik A, Augustine R. Challenges in oral drug delivery of antiretrovirals and the innovative strategies to overcome them. Adv Drug Deliv Rev 2016;103:105-20. [PMID: 26772138 DOI: 10.1016/j.addr.2015.12.022] [Cited by in Crossref: 59] [Cited by in F6Publishing: 49] [Article Influence: 9.8] [Reference Citation Analysis]
25 Schlachet I, Sosnik A. Mixed Mucoadhesive Amphiphilic Polymeric Nanoparticles Cross a Model of Nasal Septum Epithelium in Vitro. ACS Appl Mater Interfaces 2019;11:21360-71. [PMID: 31124655 DOI: 10.1021/acsami.9b04766] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
26 Lima VS, Guimarães ATB, da Costa Araújo AP, Estrela FN, da Silva IC, de Melo NFS, Fraceto LF, Malafaia G. Depression, anxiety-like behavior, and memory impairment in mice exposed to chitosan-coated zein nanoparticles. Environ Sci Pollut Res 2019;26:10641-50. [DOI: 10.1007/s11356-019-04536-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
27 Bayer IS. Recent Advances in Mucoadhesive Interface Materials, Mucoadhesion Characterization, and Technologies. Adv Materials Inter. [DOI: 10.1002/admi.202200211] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
28 Halamish HM, Trousil J, Rak D, Knudsen KD, Pavlova E, Nyström B, Štěpánek P, Sosnik A. Self-assembly and nanostructure of poly(vinyl alcohol)-graft-poly(methyl methacrylate) amphiphilic nanoparticles. Journal of Colloid and Interface Science 2019;553:512-23. [DOI: 10.1016/j.jcis.2019.06.047] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
29 Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021;332:312-36. [PMID: 33652113 DOI: 10.1016/j.jconrel.2021.02.031] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
30 Raval N, Maheshwari R, Shukla H, Kalia K, Torchilin VP, Tekade RK. Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. Mater Sci Eng C Mater Biol Appl 2021;126:112186. [PMID: 34082985 DOI: 10.1016/j.msec.2021.112186] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Marcos X, Pérez-casas S, Llovo J, Concheiro A, Alvarez-lorenzo C. Poloxamer-hydroxyethyl cellulose-α-cyclodextrin supramolecular gels for sustained release of griseofulvin. International Journal of Pharmaceutics 2016;500:11-9. [DOI: 10.1016/j.ijpharm.2016.01.015] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
32 Naki T, Aderibigbe BA. Efficacy of Polymer-Based Nanomedicine for the Treatment of Brain Cancer. Pharmaceutics 2022;14:1048. [DOI: 10.3390/pharmaceutics14051048] [Reference Citation Analysis]
33 Mahmood A, Lanthaler M, Laffleur F, Huck CW, Bernkop-Schnürch A. Thiolated chitosan micelles: Highly mucoadhesive drug carriers. Carbohydr Polym 2017;167:250-8. [PMID: 28433160 DOI: 10.1016/j.carbpol.2017.03.019] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
34 Moshe H, Davizon Y, Menaker Raskin M, Sosnik A. Novel poly(vinyl alcohol)-based amphiphilic nanogels by non-covalent boric acid crosslinking of polymeric micelles. Biomater Sci 2017;5:2295-309. [PMID: 29019482 DOI: 10.1039/c7bm00675f] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
35 Charlie-Silva I, de Melo NFS, Gomes JMM, Fraceto LF, de Melo DC, de Oliveira Silva J, de Barros ALB, Corrêa JD Junior. Nanoparticle mucoadhesive system as a new tool for fish immune system modulation. Fish Shellfish Immunol 2018;80:651-4. [PMID: 29859314 DOI: 10.1016/j.fsi.2018.05.057] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
36 Xue Y, Sun J, Wu Z, Liu T, Xin X, Xu G. Synthesis, aggregation behavior, and simvastatin solubilization by block polyethers with different structures. Colloid Polym Sci 2018;296:1225-33. [DOI: 10.1007/s00396-018-4341-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2020;49:5058-100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 10.0] [Reference Citation Analysis]
38 Franz-montan M, de Araújo DR, de Morais Ribeiro LN, de Melo NFS, de Paula E. Nanostructured systems for transbuccal drug delivery. Nanostructures for Oral Medicine. Elsevier; 2017. pp. 87-121. [DOI: 10.1016/b978-0-323-47720-8.00005-5] [Cited by in Crossref: 8] [Article Influence: 1.6] [Reference Citation Analysis]
39 Le-vinh B, Le NN, Nazir I, Matuszczak B, Bernkop-schnürch A. Chitosan based micelle with zeta potential changing property for effective mucosal drug delivery. International Journal of Biological Macromolecules 2019;133:647-55. [DOI: 10.1016/j.ijbiomac.2019.04.081] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
40 Chen N, Niu J, Li Q, Li J, chen X, Ren Y, Wu G, Liu Y, Shi Y. Development and evaluation of a new gastroretentive drug delivery system: Nanomicelles-loaded floating mucoadhesive beads. Journal of Drug Delivery Science and Technology 2019;51:485-92. [DOI: 10.1016/j.jddst.2019.03.024] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
41 Calderón M, Sosnik A. Polymeric soft nanocarriers as smart drug delivery systems: State-of-the-art and future perspectives. Biotechnology Advances 2015;33:1277-8. [DOI: 10.1016/j.biotechadv.2015.06.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
42 Eshel-green T, Bianco-peled H. Mucoadhesive acrylated block copolymers micelles for the delivery of hydrophobic drugs. Colloids and Surfaces B: Biointerfaces 2016;139:42-51. [DOI: 10.1016/j.colsurfb.2015.11.044] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
43 Saneja A, Nehate C, Alam N, Gupta PN. Recent Advances in Chitosan-Based Nanomedicines for Cancer Chemotherapy. In: Dutta PK, editor. Chitin and Chitosan for Regenerative Medicine. New Delhi: Springer India; 2016. pp. 229-59. [DOI: 10.1007/978-81-322-2511-9_9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
44 Zhou X, Zhao K. How side chains affect conformation and electrical properties of poly(acrylic acid) in solution? Phys Chem Chem Phys 2017;19:20559-72. [PMID: 28730200 DOI: 10.1039/c7cp02460f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
45 Ghezzi M, Ferraboschi I, Delledonne A, Pescina S, Padula C, Santi P, Sissa C, Terenziani F, Nicoli S. Cyclosporine-loaded micelles for ocular delivery: Investigating the penetration mechanisms. J Control Release 2022:S0168-3659(22)00429-1. [PMID: 35901859 DOI: 10.1016/j.jconrel.2022.07.019] [Reference Citation Analysis]
46 Taipaleenmäki EM, Mouritzen SA, Schattling PS, Zhang Y, Städler B. Mucopenetrating micelles with a PEG corona. Nanoscale 2017;9:18438-48. [DOI: 10.1039/c7nr06821b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 2.4] [Reference Citation Analysis]
47 Wu Q, Li L. Thermal sensitive Poloxamer/Chitosan hydrogel for drug delivery in vagina. Mater Res Express 2020;7:105401. [DOI: 10.1088/2053-1591/abbafd] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
48 Awad R, Avital A, Sosnik A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.07.003] [Reference Citation Analysis]
49 Sosnik A. Tissue-based in vitro and ex vivo models for nasal permeability studies. Concepts and Models for Drug Permeability Studies. Elsevier; 2016. pp. 237-54. [DOI: 10.1016/b978-0-08-100094-6.00014-6] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
50 Schlachet I, Sosnik A. Protoporphyrin IX-modified chitosan-g-oligo(NiPAAm) polymeric micelles: from physical stabilization to permeability characterization in vitro. Biomater Sci 2016;5:128-40. [PMID: 27905575 DOI: 10.1039/c6bm00667a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Tran HT, Vong LB, Nishikawa Y, Nagasaki Y. Sorafenib-loaded silica-containing redox nanoparticles for oral anti-liver fibrosis therapy. J Control Release 2022:S0168-3659(22)00196-1. [PMID: 35395328 DOI: 10.1016/j.jconrel.2022.04.002] [Reference Citation Analysis]
52 Kulkarni B, Qutub S, Ladelta V, Khashab NM, Hadjichristidis N. AIE-Based Fluorescent Triblock Copolymer Micelles for Simultaneous Drug Delivery and Intracellular Imaging. Biomacromolecules 2021;22:5243-55. [PMID: 34852198 DOI: 10.1021/acs.biomac.1c01165] [Reference Citation Analysis]
53 Pugliese E, Coentro JQ, Zeugolis DI. Advancements and Challenges in Multidomain Multicargo Delivery Vehicles. Adv Mater 2018;30:e1704324. [PMID: 29446161 DOI: 10.1002/adma.201704324] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
54 Pham DT, Chokamonsirikun A, Phattaravorakarn V, Tiyaboonchai W. Polymeric micelles for pulmonary drug delivery: a comprehensive review. J Mater Sci 2021;56:2016-36. [DOI: 10.1007/s10853-020-05361-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
55 Luo Z, Fan S, Gu C, Liu W, Chen J, Li B, Liu J. Metal-Organic Framework (MOF)-based Nanomaterials for Biomedical Applications. Curr Med Chem 2019;26:3341-69. [PMID: 29446726 DOI: 10.2174/0929867325666180214123500] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 10.7] [Reference Citation Analysis]
56 Matelová A, Huerta-angeles G, Šmejkalová D, Brůnová Z, Dušek J, Vícha R, Velebný V. Synthesis of novel amphiphilic hyaluronan containing-aromatic fatty acids for fabrication of polymeric micelles. Carbohydrate Polymers 2016;151:1175-83. [DOI: 10.1016/j.carbpol.2016.06.085] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
57 Li C, Li H, Wang Q, Zhou M, Li M, Gong T, Zhang Z, Sun X. pH-sensitive polymeric micelles for targeted delivery to inflamed joints. Journal of Controlled Release 2017;246:133-41. [DOI: 10.1016/j.jconrel.2016.12.027] [Cited by in Crossref: 64] [Cited by in F6Publishing: 56] [Article Influence: 12.8] [Reference Citation Analysis]
58 Liu Y, Lei P, Liao X, Wang C. Nanoscale metal–organic frameworks as smart nanocarriers for cancer therapy. J Nanostruct Chem. [DOI: 10.1007/s40097-022-00493-2] [Reference Citation Analysis]
59 Abdollahi AR, Firouzian F, Haddadi R, Nourian A. Indomethacin loaded dextran stearate polymeric micelles improve adjuvant-induced arthritis in rats: design and in vivo evaluation. Inflammopharmacology 2021;29:107-21. [PMID: 33179175 DOI: 10.1007/s10787-020-00776-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Zaidi S, Misba L, Khan AU. Nano-therapeutics: A revolution in infection control in post antibiotic era. Nanomedicine 2017;13:2281-301. [PMID: 28673854 DOI: 10.1016/j.nano.2017.06.015] [Cited by in Crossref: 78] [Cited by in F6Publishing: 56] [Article Influence: 15.6] [Reference Citation Analysis]
61 Sato H, Kaneko Y, Yamada K, Ristroph KD, Lu HD, Seto Y, Chan H, Prud’homme RK, Onoue S. Polymeric Nanocarriers With Mucus-Diffusive and Mucus-Adhesive Properties to Control Pharmacokinetic Behavior of Orally Dosed Cyclosporine A. Journal of Pharmaceutical Sciences 2020;109:1079-85. [DOI: 10.1016/j.xphs.2019.10.043] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
62 Zhang J, Chen L, Shen B, Chen L, Mo J, Feng J. Dual-Sensitive Graphene Oxide Loaded with Proapoptotic Peptides and Anticancer Drugs for Cancer Synergetic Therapy. Langmuir 2019;35:6120-8. [PMID: 30983368 DOI: 10.1021/acs.langmuir.9b00611] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
63 Xiang Z, Qi Y, Lu Y, Hu Z, Wang X, Jia W, Hu J, Ji J, Lu W. MOF-derived novel porous Fe 3 O 4 @C nanocomposites as smart nanomedical platforms for combined cancer therapy: magnetic-triggered synergistic hyperthermia and chemotherapy. J Mater Chem B 2020;8:8671-83. [DOI: 10.1039/d0tb01021a] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
64 Subramanian P. Mucoadhesive Delivery System: A Smart Way to Improve Bioavailability of Nutraceuticals. Foods 2021;10:1362. [PMID: 34208328 DOI: 10.3390/foods10061362] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Wu W, Luo L, Wang Y, Wu Q, Dai HB, Li JS, Durkan C, Wang N, Wang GX. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 2018;8:3038-58. [PMID: 29896301 DOI: 10.7150/thno.23459] [Cited by in Crossref: 107] [Cited by in F6Publishing: 90] [Article Influence: 26.8] [Reference Citation Analysis]
66 Schlachet I, Trousil J, Rak D, Knudsen KD, Pavlova E, Nyström B, Sosnik A. Chitosan-graft-poly(methyl methacrylate) amphiphilic nanoparticles: Self-association and physicochemical characterization. Carbohydr Polym 2019;212:412-20. [PMID: 30832875 DOI: 10.1016/j.carbpol.2019.02.022] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
67 Ferreira AL, Charlie-silva I, Favero GC, Silva de Melo NF, Fraceto LF, Júnior JDC, Luz RK. Chitosan-coated zein nanoparticles containing eugenol potentiates anesthesia in Nile tilapia. Aquaculture 2020;529:735659. [DOI: 10.1016/j.aquaculture.2020.735659] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Glisoni RJ, Quintana L SS, Molina M, Calderón M, Moglioni AG, Sosnik A. Chitosan-g-oligo(epsilon-caprolactone) polymeric micelles: microwave-assisted synthesis and physicochemical and cytocompatibility characterization. J Mater Chem B 2015;3:4853-64. [DOI: 10.1039/c5tb00594a] [Cited by in Crossref: 19] [Article Influence: 2.7] [Reference Citation Analysis]
69 Kosakowska KA, Casey BK, Albert JNL, Wang Y, Ashbaugh HS, Grayson SM. Synthesis and Self-Assembly of Amphiphilic Star/Linear-Dendritic Polymers: Effect of Core versus Peripheral Branching on Reverse Micelle Aggregation. Biomacromolecules 2018;19:3177-89. [PMID: 29986144 DOI: 10.1021/acs.biomac.8b00679] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
70 Murshid N, Wang X. Iron-Carbonyl Aqueous Vesicles (MCsomes) by Hydration of [Fe(CO){CO(CH2)5CH3}(Cp)(PPh3)] (FpC6): Highly Integrated Colloids with Aggregation-Induced Self-Enhanced IR Absorption (AI-SEIRA). Chemistry 2015;21:19223-30. [PMID: 26563745 DOI: 10.1002/chem.201502121] [Cited by in Crossref: 11] [Article Influence: 1.6] [Reference Citation Analysis]
71 Wang Y, Wang C, Li K, Song X, Yan X, Yu L, He Z. Recent advances of nanomedicine-based strategies in diabetes and complications management: Diagnostics, monitoring, and therapeutics. J Control Release 2021;330:618-40. [PMID: 33417985 DOI: 10.1016/j.jconrel.2021.01.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
72 Liu Y, Chen F, Zhang K, Wang Q, Chen Y, Luo X. pH-Responsive reversibly cross-linked micelles by phenol–yne click via curcumin as a drug delivery system in cancer chemotherapy. J Mater Chem B 2019;7:3884-93. [DOI: 10.1039/c9tb00305c] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
73 Homayun B, Lin X, Choi HJ. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019;11:E129. [PMID: 30893852 DOI: 10.3390/pharmaceutics11030129] [Cited by in Crossref: 152] [Cited by in F6Publishing: 106] [Article Influence: 50.7] [Reference Citation Analysis]
74 Pund S, Joshi A. Nanoarchitectures for Neglected Tropical Protozoal Diseases: Challenges and State of the Art. Nano- and Microscale Drug Delivery Systems. Elsevier; 2017. pp. 439-80. [DOI: 10.1016/b978-0-323-52727-9.00023-6] [Cited by in Crossref: 11] [Article Influence: 2.2] [Reference Citation Analysis]
75 Cagel M, Tesan FC, Bernabeu E, Salgueiro MJ, Zubillaga MB, Moretton MA, Chiappetta DA. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm 2017;113:211-28. [PMID: 28087380 DOI: 10.1016/j.ejpb.2016.12.019] [Cited by in Crossref: 157] [Cited by in F6Publishing: 131] [Article Influence: 31.4] [Reference Citation Analysis]
76 Noi I, Schlachet I, Kumarasamy M, Sosnik A. Permeability of Novel Chitosan-g-Poly(Methyl Methacrylate) Amphiphilic Nanoparticles in a Model of Small Intestine In Vitro. Polymers (Basel) 2018;10:E478. [PMID: 30966512 DOI: 10.3390/polym10050478] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
77 Sosnik A, Shabo RB, Halamish HM. Cannabidiol-Loaded Mixed Polymeric Micelles of Chitosan/Poly(Vinyl Alcohol) and Poly(Methyl Methacrylate) for Trans-Corneal Delivery. Pharmaceutics 2021;13:2142. [PMID: 34959427 DOI: 10.3390/pharmaceutics13122142] [Reference Citation Analysis]
78 Vehlow D, Schmidt R, Gebert A, Siebert M, Lips KS, Müller M. Polyelectrolyte Complex Based Interfacial Drug Delivery System with Controlled Loading and Improved Release Performance for Bone Therapeutics. Nanomaterials (Basel) 2016;6:E53. [PMID: 28344311 DOI: 10.3390/nano6030053] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
79 Falzarano MS, Scotton C, Passarelli C, Ferlini A. Duchenne Muscular Dystrophy: From Diagnosis to Therapy. Molecules 2015;20:18168-84. [PMID: 26457695 DOI: 10.3390/molecules201018168] [Cited by in Crossref: 101] [Cited by in F6Publishing: 88] [Article Influence: 14.4] [Reference Citation Analysis]
80 Watchorn J, Clasky AJ, Prakash G, Johnston IAE, Chen PZ, Gu FX. Untangling Mucosal Drug Delivery: Engineering, Designing, and Testing Nanoparticles to Overcome the Mucus Barrier. ACS Biomater Sci Eng 2022;8:1396-426. [PMID: 35294187 DOI: 10.1021/acsbiomaterials.2c00047] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Pramanik S, Sali V. Connecting the dots in drug delivery: A tour d'horizon of chitosan-based nanocarriers system. Int J Biol Macromol 2021;169:103-21. [PMID: 33338522 DOI: 10.1016/j.ijbiomac.2020.12.083] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
82 Lübtow MM, Keßler L, Appelt-Menzel A, Lorson T, Gangloff N, Kirsch M, Dahms S, Luxenhofer R. More Is Sometimes Less: Curcumin and Paclitaxel Formulations Using Poly(2-oxazoline) and Poly(2-oxazine)-Based Amphiphiles Bearing Linear and Branched C9 Side Chains. Macromol Biosci 2018;18:e1800155. [PMID: 30256527 DOI: 10.1002/mabi.201800155] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
83 Pereira P, Serra AC, Coelho JF. Vinyl Polymer-based technologies towards the efficient delivery of chemotherapeutic drugs. Progress in Polymer Science 2021;121:101432. [DOI: 10.1016/j.progpolymsci.2021.101432] [Reference Citation Analysis]
84 Kaur J, Gulati M, Kumar Jha N, Disouza J, Patravale V, Dua K, Kumar Singh S. Recent advances in developing polymeric micelles for treating cancer: breakthroughs and bottlenecks in their clinical translation. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.02.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
85 Raskin MM, Schlachet I, Sosnik A. Mucoadhesive nanogels by ionotropic crosslinking of chitosan-g-oligo(NiPAam) polymeric micelles as novel drug nanocarriers. Nanomedicine (Lond) 2016;11:217-33. [PMID: 26786232 DOI: 10.2217/nnm.15.191] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
86 Sosnik A, Imperiale JC, Vázquez-gonzález B, Raskin MM, Muñoz-muñoz F, Burillo G, Cedillo G, Bucio E. Mucoadhesive thermo-responsive chitosan- g -poly( N -isopropylacrylamide) polymeric micelles via a one-pot gamma-radiation-assisted pathway. Colloids and Surfaces B: Biointerfaces 2015;136:900-7. [DOI: 10.1016/j.colsurfb.2015.10.036] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
87 Marcos X, Padilla-beltrán C, Bernad-bernad MJ, Rosales-hernández MC, Pérez-casas S, Correa-basurto J. Controlled release of N-(2-hydroxyphenyl)-2-propylpentanamide nanoencapsulated in polymeric micelles of P123 and F127 tested as anti-proliferative agents in MDA-MB-231 cells. Journal of Drug Delivery Science and Technology 2018;48:403-13. [DOI: 10.1016/j.jddst.2018.10.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
88 Zhang L, Chen Z, Wang H, Wu S, Zhao K, Sun H, Kong D, Wang C, Leng X, Zhu D. Preparation and evaluation of PCL–PEG–PCL polymeric nanoparticles for doxorubicin delivery against breast cancer. RSC Adv 2016;6:54727-37. [DOI: 10.1039/c6ra04687h] [Cited by in Crossref: 18] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
89 [DOI: 10.1117/12.2246140] [Reference Citation Analysis]