BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ludwig-Müller J, Jahn L, Lippert A, Püschel J, Walter A. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications. Biotechnol Adv 2014;32:1168-79. [PMID: 24699436 DOI: 10.1016/j.biotechadv.2014.03.007] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 4.6] [Reference Citation Analysis]
Number Citing Articles
1 Anil Kumar M, Sravanthi Pammi SS, Sukanya MS, Giri A. Enhanced production of pharmaceutically important isoflavones from hairy root rhizoclones of Trifolium pratense L. In Vitro Cell Dev Biol -Plant 2018;54:94-103. [DOI: 10.1007/s11627-017-9873-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
2 Abiri R, Abdul-Hamid H, Sytar O, Abiri R, Bezerra de Almeida E Jr, Sharma SK, Bulgakov VP, Arroo RRJ, Malik S. A Brief Overview of Potential Treatments for Viral Diseases Using Natural Plant Compounds: The Case of SARS-Cov. Molecules 2021;26:3868. [PMID: 34202844 DOI: 10.3390/molecules26133868] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zheleznichenko T, Banaev E, Asbaganov S, Voronkova M, Kukushkina T, Filippova E, Mazurkova N, Shishkina L, Novikova T. Nitraria schoberi L. hairy root culture as a source of compounds with antiviral activity against influenza virus subtypes А(H5N1) and А(H3N2). 3 Biotech 2018;8:260. [PMID: 29780682 DOI: 10.1007/s13205-018-1280-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Matsuura HN, Malik S, de Costa F, Yousefzadi M, Mirjalili MH, Arroo R, Bhambra AS, Strnad M, Bonfill M, Fett-Neto AG. Specialized Plant Metabolism Characteristics and Impact on Target Molecule Biotechnological Production. Mol Biotechnol 2018;60:169-83. [PMID: 29290031 DOI: 10.1007/s12033-017-0056-1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
5 Cuong DM, Park SU, Park CH, Kim NS, Bong SJ, Lee SY. Comparative analysis of glucosinolate production in hairy roots of green and red kale (Brassica oleracea var. acephala). Prep Biochem Biotechnol 2019;49:775-82. [PMID: 31124740 DOI: 10.1080/10826068.2019.1615505] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
6 Ru M, An Y, Wang K, Peng L, Li B, Bai Z, Wang B, Liang Z. Prunella vulgaris L. hairy roots: Culture, growth, and elicitation by ethephon and salicylic acid. Eng Life Sci 2016;16:494-502. [DOI: 10.1002/elsc.201600001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 3.2] [Reference Citation Analysis]
7 Georgiev MI. From plants to pharmacy shelf. Biotechnology Advances 2014;32:1051-2. [DOI: 10.1016/j.biotechadv.2014.08.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
8 Georgiev MI, Radziszewska A, Neumann M, Marchev A, Alipieva K, Ludwig-müller J. Metabolic alterations of Verbascum nigrum L. plants and SAArT transformed roots as revealed by NMR-based metabolomics. Plant Cell Tiss Organ Cult 2015;123:349-56. [DOI: 10.1007/s11240-015-0840-1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
9 Marchev A, Yordanova Z, Alipieva K, Zahmanov G, Rusinova-videva S, Kapchina-toteva V, Simova S, Popova M, Georgiev MI. Genetic transformation of rare Verbascum eriophorum Godr. plants and metabolic alterations revealed by NMR-based metabolomics. Biotechnol Lett 2016;38:1621-9. [DOI: 10.1007/s10529-016-2138-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
10 Ludwig-Müller J. Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 2015;37:1325-34. [PMID: 25792513 DOI: 10.1007/s10529-015-1814-4] [Cited by in Crossref: 135] [Cited by in F6Publishing: 96] [Article Influence: 19.3] [Reference Citation Analysis]
11 Sánchez-Ramos M, Marquina-Bahena S, Alvarez L, Román-Guerrero A, Bernabé-Antonio A, Cruz-Sosa F. Phytochemical, Pharmacological, and Biotechnological Study of Ageratina pichinchensis: A Native Species of Mexico. Plants (Basel) 2021;10:2225. [PMID: 34686034 DOI: 10.3390/plants10102225] [Reference Citation Analysis]
12 Solis-castañeda GJ, Zamilpa A, Cabañas-garcía E, Bahena SM, Pérez-molphe-balch E, Gómez-aguirre YA. Identification and quantitative determination of feruloyl-glucoside from hairy root cultures of Turbinicarpus lophophoroides (Werderm.) Buxb. & Backeb. (Cactaceae). In Vitro Cell Dev Biol -Plant 2020;56:8-17. [DOI: 10.1007/s11627-019-10029-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Zhang S, Li H, Liang X, Yan Y, Xia P, Jia Y, Liang Z. Enhanced production of phenolic acids in Salvia miltiorrhiza hairy root cultures by combing the RNAi-mediated silencing of chalcone synthase gene with salicylic acid treatment. Biochemical Engineering Journal 2015;103:185-92. [DOI: 10.1016/j.bej.2015.07.019] [Cited by in Crossref: 30] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
14 Marchev AS, Yordanova ZP, Georgiev MI. Transformed Root Culture: From Genetic Transformation to NMR-Based Metabolomics. Methods Mol Biol 2018;1815:457-74. [PMID: 29981142 DOI: 10.1007/978-1-4939-8594-4_32] [Reference Citation Analysis]
15 Srinivas K, Muralikrishna N, Kumar KB, Raghu E, Mahender A, Kiranmayee K, Yashodahara V, Sadanandam A. Biolistic transformation of Scoparia dulcis L. Physiol Mol Biol Plants 2016;22:61-8. [PMID: 27186019 DOI: 10.1007/s12298-016-0338-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
16 Muthusamy B, Shanmugam G. Analysis of flavonoid content, antioxidant, antimicrobial and antibiofilm activity of in vitro hairy root extract of radish (Raphanus sativus L.). Plant Cell Tiss Organ Cult 2020;140:619-33. [DOI: 10.1007/s11240-019-01757-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
17 Jiao J, Gai QY, Fu YJ, Ma W, Peng X, Tan SN, Efferth T. Efficient production of isoflavonoids by Astragalus membranaceus hairy root cultures and evaluation of antioxidant activities of extracts. J Agric Food Chem 2014;62:12649-58. [PMID: 25483292 DOI: 10.1021/jf503839m] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
18 Neumann M, Prahl S, Caputi L, Hill L, Kular B, Walter A, Patallo EP, Milbredt D, Aires A, Schöpe M, O'Connor S, van Pée KH, Ludwig-Müller J. Hairy root transformation of Brassica rapa with bacterial halogenase genes and regeneration to adult plants to modify production of indolic compounds. Phytochemistry 2020;175:112371. [PMID: 32283438 DOI: 10.1016/j.phytochem.2020.112371] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Cuong DM, Kim JK, Bong SJ, Baek SA, Jeon J, Park JS, Park SU. Comparative analysis of glucosinolates and metabolite profiling of green and red mustard (brassica juncea) hairy roots. 3 Biotech 2018;8:382. [PMID: 30148032 DOI: 10.1007/s13205-018-1393-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
20 Gai Q, Jiao J, Luo M, Wang W, Gu C, Fu Y, Ma W. Tremendous enhancements of isoflavonoid biosynthesis, associated gene expression and antioxidant capacity in Astragalus membranaceus hairy root cultures elicited by methyl jasmonate. Process Biochemistry 2016;51:642-9. [DOI: 10.1016/j.procbio.2016.01.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
21 Balasubramanian M, Anbumegala M, Surendran R, Arun M, Shanmugam G. Elite hairy roots of Raphanus sativus (L.) as a source of antioxidants and flavonoids. 3 Biotech 2018;8:128. [PMID: 29450118 DOI: 10.1007/s13205-018-1153-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
22 Korkina LG, Mayer W, de Luca C. Meristem Plant Cells as a Sustainable Source of Redox Actives for Skin Rejuvenation. Biomolecules 2017;7:E40. [PMID: 28498360 DOI: 10.3390/biom7020040] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
23 Jiao J, Gai Q, Fu Y, Ma W, Yao L, Feng C, Xia X. Optimization of Astragalus membranaceus hairy roots induction and culture conditions for augmentation production of astragalosides. Plant Cell Tiss Organ Cult 2015;120:1117-30. [DOI: 10.1007/s11240-014-0668-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
24 Wahby I, Caba JM, Ligero F. Hairy Root Culture as a Biotechnological Tool in C. sativa. In: Chandra S, Lata H, Elsohly MA, editors. Cannabis sativa L. - Botany and Biotechnology. Cham: Springer International Publishing; 2017. pp. 299-317. [DOI: 10.1007/978-3-319-54564-6_14] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
25 Jiao J, Gai Q, Wang W, Luo M, Gu C, Fu Y, Ma W. Ultraviolet Radiation-Elicited Enhancement of Isoflavonoid Accumulation, Biosynthetic Gene Expression, and Antioxidant Activity in Astragalus membranaceus Hairy Root Cultures. J Agric Food Chem 2015;63:8216-24. [DOI: 10.1021/acs.jafc.5b03138] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
26 Amani S, Mohebodini M, Khademvatan S, Jafari M. Agrobacterium rhizogenes mediated transformation of Ficus carica L. for the efficient production of secondary metabolites. J Sci Food Agric 2020;100:2185-97. [PMID: 31901132 DOI: 10.1002/jsfa.10243] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
27 Cao H, Chen X, Jassbi AR, Xiao J. Microbial biotransformation of bioactive flavonoids. Biotechnology Advances 2015;33:214-23. [DOI: 10.1016/j.biotechadv.2014.10.012] [Cited by in Crossref: 112] [Cited by in F6Publishing: 79] [Article Influence: 16.0] [Reference Citation Analysis]
28 Liang J, Liang J, Hao H, Lin H, Wang P, Wu Y, Jiang X, Fu C, Li Q, Ding P, Liu H, Xiong Q, Lai X, Zhou L, Chan S, Hou S. The Extracts of Morinda officinalis and Its Hairy Roots Attenuate Dextran Sodium Sulfate-Induced Chronic Ulcerative Colitis in Mice by Regulating Inflammation and Lymphocyte Apoptosis. Front Immunol 2017;8:905. [PMID: 28824631 DOI: 10.3389/fimmu.2017.00905] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
29 Kareem ZJ, Su L, Rathgeb A, Sirrenberg A, Hadacek F, Rashid AHAH, Karlovsky P. Small-Scale Bioreactor for Sterile Hydroponics and Hairy Roots: Metabolic Diversity and Salicylic Acid Exudation by Hairy Roots of Hyoscyamus niger. Applied Sciences 2019;9:3044. [DOI: 10.3390/app9153044] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
30 Silpa P, Roopa K, Dennis Thomas T. Production of Plant Secondary Metabolites: Current Status and Future Prospects. In: Kumar N, editor. Biotechnological Approaches for Medicinal and Aromatic Plants. Singapore: Springer; 2018. pp. 3-25. [DOI: 10.1007/978-981-13-0535-1_1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
31 Rusanov K, Atanassov A, Atanassov I. Engineering Cell and Organ Cultures from Medicinal and Aromatic Plants Toward Commercial Production of Bioactive Metabolites. In: Merillon J, Ramawat KG, editors. Sweeteners. Cham: Springer International Publishing; 2017. pp. 1-34. [DOI: 10.1007/978-3-319-32004-5_8-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]