BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li H, Lin H, Lv W, Gai P, Li F. Equipment-free and visual detection of multiple biomarkers via an aggregation induced emission luminogen-based paper biosensor. Biosens Bioelectron 2020;165:112336. [PMID: 32729480 DOI: 10.1016/j.bios.2020.112336] [Cited by in Crossref: 49] [Cited by in F6Publishing: 68] [Article Influence: 24.5] [Reference Citation Analysis]
Number Citing Articles
1 Gupta H, Singh R, Kaur V. In-situ generation of fluorescent silica nano-aggregates of silatranyl appended furfural Schiff base and its application to the spectrofluorimetric analysis of phenolic brominated flame retardants in aqueous medium. Spectrochim Acta A Mol Biomol Spectrosc 2022;278:121338. [PMID: 35567821 DOI: 10.1016/j.saa.2022.121338] [Reference Citation Analysis]
2 Harshini D, Devibala P, Angela VM, Nagarajan S. Approaches for Fabricating Tri‐ and Tetraphenylethene‐Based Blue Organic Light‐Emitting Diodes Using Donor–Acceptor and Non‐Donor–Acceptor Molecular Architectures. Physica Rapid Research Ltrs. [DOI: 10.1002/pssr.202200206] [Reference Citation Analysis]
3 Mao G, Yang Y, Cao S, Ye S, Li Y, Zhao W, An H, Liu Y, Dai J, Ma Y. Ratiometric fluorescence immunoassay of SARS-CoV-2 nucleocapsid protein via Si-FITC nanoprobe-based inner filter effect. Nano Res . [DOI: 10.1007/s12274-022-4740-5] [Reference Citation Analysis]
4 Lin H, Fu J, Tian Y, Huang W, Cheng H, Liang G, Wang X. Design, Synthesis, Crystal Structure and DFT Analysis of 1-(1,2,2-Triphenylvinyl)-1H-indoles with Aggregation-Induced Emission Property. Journal of Molecular Structure 2022. [DOI: 10.1016/j.molstruc.2022.134022] [Reference Citation Analysis]
5 Wu Y, Wu X, Liang Y, Zeng J, Wu Y, Lai J, Sun H. A strategy of “fluorescence-visualization dual channel” for highly sensitive and rapid detection of phosphate biomarkers based on stimulus-responsive infinite coordination polymers. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.132366] [Reference Citation Analysis]
6 Kusior A. Voltammetric Detection of Glucose—The Electrochemical Behavior of the Copper Oxide Materials with Well-Defined Facets. Sensors 2022;22:4783. [DOI: 10.3390/s22134783] [Reference Citation Analysis]
7 Kumar S, Sharma R, Bhawna, Gupta A, Singh P, Kalia S, Thakur P, Kumar V. Prospects of Biosensors Based on Functionalized and Nanostructured Solitary Materials: Detection of Viral Infections and Other Risks. ACS Omega. [DOI: 10.1021/acsomega.2c01033] [Reference Citation Analysis]
8 Roy L, Buragohain P, Borse V. Strategies for sensitivity enhancement of point-of-care devices. Biosensors and Bioelectronics: X 2022;10:100098. [DOI: 10.1016/j.biosx.2021.100098] [Reference Citation Analysis]
9 Hao L, Chung W, Ning X. Human-Machine Interface Visual Communication Design Model of Electronic Equipment Using Machine Vision Technology. Wireless Communications and Mobile Computing 2022;2022:1-9. [DOI: 10.1155/2022/7138674] [Reference Citation Analysis]
10 Ma J, Zhang M, Su W, Wu B, Yang Z, Wang X, Qiao B, Pei H, Tu J, Chen D, Wu Q. Photoelectrochemical Enzyme Biosensor Based on TiO2 Nanorod/TiO2 Quantum Dot/Polydopamine/Glucose Oxidase Composites with Strong Visible-Light Response. Langmuir 2022;38:751-61. [PMID: 34981932 DOI: 10.1021/acs.langmuir.1c02741] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. J Anal Test 2022;:1-27. [PMID: 35039787 DOI: 10.1007/s41664-021-00204-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
12 Wang Z, Wang Y, Lin L, Wu T, Zhao Z, Ying B, Chang L. A finger-driven disposable micro-platform based on isothermal amplification for the application of multiplexed and point-of-care diagnosis of tuberculosis. Biosens Bioelectron 2022;195:113663. [PMID: 34610534 DOI: 10.1016/j.bios.2021.113663] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
13 Su D, Wang X, Zhang W, Li P, Tang B. Fluorescence imaging for visualizing the bioactive molecules of lipid peroxidation within biological systems. TrAC Trends in Analytical Chemistry 2022;146:116484. [DOI: 10.1016/j.trac.2021.116484] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Liu J, Zheng X, Dong Y, Li W, Yin M, Song Q, Zhang C. Novel A–D–A structural imidazole derivatives with charge transfer excited states: importance of molecular structure design in obtaining a “turn-on” type fluorescence probe. New J Chem . [DOI: 10.1039/d2nj02013k] [Reference Citation Analysis]
15 Feng DQ, Liu G. Target-Activating and Toehold Displacement Ag NCs/GO Biosensor-Mediating Signal Shift and Enhancement for Simultaneous Multiple Detection. Anal Chem 2021;93:16025-34. [PMID: 34817158 DOI: 10.1021/acs.analchem.1c03570] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Zhu S, Tang Y, Shi B, Zou W, Wang X, Wang C, Wu Y. Oligonucleotide-mediated the oxidase-mimicking activity of Mn3O4 nanoparticles as a novel colorimetric aptasensor for ultrasensitive and selective detection of Staphylococcus aureus in food. Sensors and Actuators B: Chemical 2021;349:130809. [DOI: 10.1016/j.snb.2021.130809] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
17 Xu J, Khan H, Yang L. Hydrogel Paper-Based Analytical Devices: Separation-Free In Situ Assay of Small-Molecule Targets in Whole Blood. Anal Chem 2021;93:14755-63. [PMID: 34709797 DOI: 10.1021/acs.analchem.1c03347] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
18 Wan W, Zeng L, Jin W, Chen X, Shen D, Huang Y, Wang M, Bai Y, Lyu H, Dong X, Gao Z, Wang L, Liu X, Liu Y. A Solvatochromic Fluorescent Probe Reveals Polarity Heterogeneity upon Protein Aggregation in Cells. Angewandte Chemie 2021;133:26069-75. [DOI: 10.1002/ange.202107943] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Wang J, Liu Q, Zhang S, Fu G, Zhang S, Lu Y, Wu H, Zhang H, Zhou Z. A new dual-functional chemsensor for the trace detection of mercury ion and imaging of hypochloric acid. Dyes and Pigments 2021;195:109697. [DOI: 10.1016/j.dyepig.2021.109697] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Mu J, Peng Y, Shi Z, Zhang D, Jia Q. Copper nanocluster composites for analytical (bio)-sensing and imaging: a review. Mikrochim Acta 2021;188:384. [PMID: 34664135 DOI: 10.1007/s00604-021-05011-9] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
21 Qi X, Xie Y, Zhang Y, Yao H, Lin Q, Wei T. Acid-base regulation the reversible transformation of novel phenazine derivatives and serving as biomarker for tracing acidity change in living cell and mice. Sensors and Actuators B: Chemical 2021;344:130287. [DOI: 10.1016/j.snb.2021.130287] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
22 Wan W, Zeng L, Jin W, Chen X, Shen D, Huang Y, Wang M, Bai Y, Lyu H, Dong X, Gao Z, Wang L, Liu X, Liu Y. A Solvatochromic Fluorescent Probe Reveals Polarity Heterogeneity upon Protein Aggregation in Cells. Angew Chem Int Ed Engl 2021. [PMID: 34562048 DOI: 10.1002/anie.202107943] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
23 Guo Y, Zheng Y, Liu Y, Feng X, Dong Q, Li J, Wang J, Zhao C. A concise detection strategy of Staphylococcus aureus using N-Succinyl-Chitosan-dopped bacteria-imprinted composite film and AIE fluorescence sensor. J Hazard Mater 2021;423:126934. [PMID: 34464860 DOI: 10.1016/j.jhazmat.2021.126934] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
24 Huang Y, Bai Y, Jin W, Shen D, Lyu H, Zeng L, Wang M, Liu Y. Common Pitfalls and Recommendations for Using a Turbidity Assay to Study Protein Phase Separation. Biochemistry 2021;60:2447-56. [PMID: 34369156 DOI: 10.1021/acs.biochem.1c00386] [Reference Citation Analysis]
25 He JY, Chen ZH, Deng HL, Yuan R, Xu WJ. Antibody-powered DNA switches to initiate the hybridization chain reaction for the amplified fluorescence immunoassay. Analyst 2021;146:5067-73. [PMID: 34297024 DOI: 10.1039/d1an01045j] [Reference Citation Analysis]
26 Chen S, Liu Y, Zhai F, Jia M. Novel label-free fluorescence aptasensor for chloramphenicol detection based on a DNA four-arm junction-assisted signal amplification strategy. Food Chem 2022;366:130648. [PMID: 34325245 DOI: 10.1016/j.foodchem.2021.130648] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Li X, Li M, Chen Y, Qiao G, Liu Q, Zhou Z, Liu W, Wang Q. Chemical sensing failed by aggregation-caused quenching? A case study enables liquid/solid two-phase determination of N2H4. Chemical Engineering Journal 2021;415:128975. [DOI: 10.1016/j.cej.2021.128975] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
28 Feng DQ, Liu G. Dual-Channel Logic Gates Operating on the Chemopalette ssDNA-Ag NCs/GO Nanocomposites. Anal Chem 2021;93:8326-35. [PMID: 34076403 DOI: 10.1021/acs.analchem.1c01288] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
29 Li H, Lv W, Yang Q, Li Q, Li F. Inorganic Recognizer-Assisted Homogeneous Electrochemiluminescence Determination of Organophosphorus Pesticides via Target-Controlled Emitter Release. J Agric Food Chem 2021;69:6087-95. [PMID: 34018740 DOI: 10.1021/acs.jafc.1c01006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
30 Qi H, Li H, Li F. Aptamer Recognition-Driven Homogeneous Electrochemical Strategy for Simultaneous Analysis of Multiple Pesticides without Interference of Color and Fluorescence. Anal Chem 2021;93:7739-45. [PMID: 34009937 DOI: 10.1021/acs.analchem.1c01252] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
31 Li D, Wang G, Mei X. Diagnosis of cancer at early stages based on the multiplex detection of tumor markers using metal nanoclusters. Analyst 2020;145:7150-61. [PMID: 33020766 DOI: 10.1039/d0an01538e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
32 Li Q, Wu J, Yang Q, Li H, Li F. pH and Redox Dual-Response Disulfide Bond-Functionalized Red-Emitting Gold Nanoclusters for Monitoring the Contamination of Organophosphorus Pesticides in Foods. Anal Chem 2021;93:7362-8. [PMID: 33961403 DOI: 10.1021/acs.analchem.1c01414] [Cited by in Crossref: 2] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
33 Wu H, Chen Y, Ling X, Yuan W, Li B, Zhou Z. A novel D-π-A molecule as ICT type fluorescent probe for endogenous hypochlorite imaging in living cells and zebrafishes. Journal of Molecular Liquids 2021;329:115465. [DOI: 10.1016/j.molliq.2021.115465] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
34 Xu J, Chen X, Khan H, Yang L. A dual-readout paper-based sensor for on-site detection of penicillinase with a smartphone. Sensors and Actuators B: Chemical 2021;335:129707. [DOI: 10.1016/j.snb.2021.129707] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
35 Eze FN, Jayeoye TJ, Tola AJ. Fabrication of label-free and eco-friendly ROS optical sensor with potent antioxidant properties for sensitive hydrogen peroxide detection in human plasma. Colloids Surf B Biointerfaces 2021;204:111798. [PMID: 33964531 DOI: 10.1016/j.colsurfb.2021.111798] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
36 Zhang H, Hu X, Zhu H, Shen L, Liu C, Zhang X, Gao X, Li L, Zhu YP, Li Z. A Solid-State Fluorescence Switch Based on Triphenylethene-Functionalized Dithienylethene With Aggregation-Induced Emission. Front Chem 2021;9:665880. [PMID: 33996756 DOI: 10.3389/fchem.2021.665880] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
37 Chen H, Zhou Z, Li Z, He X, Shen J. Highly sensitive fluorescent sensor based on coumarin organic dye for pyrophosphate ion turn-on biosensing in synovial fluid. Spectrochim Acta A Mol Biomol Spectrosc 2021;257:119792. [PMID: 33887510 DOI: 10.1016/j.saa.2021.119792] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
38 Munzi G, Failla S, Di Bella S. Highly selective and sensitive colorimetric/fluorometric dual mode detection of relevant biogenic amines. Analyst 2021;146:2144-51. [PMID: 33538722 DOI: 10.1039/d0an02336a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
39 Liu Y, Alkhamis O, Liu X, Yu H, Canoura J, Xiao Y. Aptamer-Integrated Multianalyte-Detecting Paper Electrochemical Device. ACS Appl Mater Interfaces 2021;13:17330-9. [PMID: 33826286 DOI: 10.1021/acsami.1c01822] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
40 Shao C, Xiong S, Cao X, Zhang C, Luo T, Liu G. Dithiothreitol-capped red emitting copper nanoclusters as highly effective fluorescent nanoprobe for cobalt (II) ions sensing. Microchemical Journal 2021;163:105922. [DOI: 10.1016/j.microc.2021.105922] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
41 Zheng Z, Zhang H, Zhai T, Xia F. Overcome Debye Length Limitations for Biomolecule Sensing Based on Field Effective Transistors . Chin J Chem 2021;39:999-1008. [DOI: 10.1002/cjoc.202000584] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
42 Li Y, Zhang Y, Wang M, Wang D, Chen K, Lin P, Ge Y, Liu W, Wu J. Highly selective fluorescence probe with peptide backbone for imaging mercury ions in living cells based on aggregation-induced emission effect. J Hazard Mater 2021;415:125712. [PMID: 34088194 DOI: 10.1016/j.jhazmat.2021.125712] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
43 Shende P, Kasture P. Bioconjugated nanoflower for estimation of glucose from saliva using nanozymes. Materials Technology. [DOI: 10.1080/10667857.2021.1898717] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Chen J, Yan J, Dou B, Feng Q, Miao X, Wang P. Aggregatable thiol-functionalized carbon dots-based fluorescence strategy for highly sensitive detection of glucose based on target-initiated catalytic oxidation. Sensors and Actuators B: Chemical 2021;330:129325. [DOI: 10.1016/j.snb.2020.129325] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
45 Cao J, Zhao L, Fu Y, Liu X, Ren S, Liu Y. Tyramide signal amplification and enzyme biocatalytic precipitation on closed bipolar electrode: Toward highly sensitive electrochemiluminescence immunoassay. Sensors and Actuators B: Chemical 2021;331:129427. [DOI: 10.1016/j.snb.2020.129427] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
46 Zhang Y, Li Y, Cui S, Wen C, Li P, Yu J, Tang S, Zeng J. Distance-Based Detection of Ag+ with Gold Nanoparticles-Coated Microfluidic Paper. J Anal Test 2021;5:11-8. [DOI: 10.1007/s41664-021-00157-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
47 Yang Q, Li Q, Li H, Li F. pH-Response Quantum Dots with Orange–Red Emission for Monitoring the Residue, Distribution, and Variation of an Organophosphorus Pesticide in an Agricultural Crop. J Agric Food Chem 2021;69:2689-96. [DOI: 10.1021/acs.jafc.0c08212] [Cited by in Crossref: 13] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
48 Yu R, Wang R, Wang Z, Liu B, He X, Dai Z. An enzyme cascade sensor with resistance to the inherent intermediate product by logic-controlled peroxidase mimic catalysis. Chem Commun (Camb) 2021;57:2089-92. [PMID: 33514982 DOI: 10.1039/d0cc08284h] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
49 Wu J, Yang Q, Li Q, Li H, Li F. Two-Dimensional MnO 2 Nanozyme-Mediated Homogeneous Electrochemical Detection of Organophosphate Pesticides without the Interference of H 2 O 2 and Color. Anal Chem 2021;93:4084-91. [DOI: 10.1021/acs.analchem.0c05257] [Cited by in Crossref: 20] [Cited by in F6Publishing: 59] [Article Influence: 20.0] [Reference Citation Analysis]
50 Chen J, Chen X, Wang P, Liu S, Chi Z. Aggregation-induced emission luminogen@manganese dioxide core-shell nanomaterial-based paper analytical device for equipment-free and visual detection of organophosphorus pesticide. J Hazard Mater 2021;413:125306. [PMID: 33588332 DOI: 10.1016/j.jhazmat.2021.125306] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
51 Sun Y, Geng X, Wang Y, Su X, Han R, Wang J, Li X, Wang P, Zhang K, Wang X. Highly Efficient Water-Soluble Photosensitizer Based on Chlorin: Synthesis, Characterization, and Evaluation for Photodynamic Therapy. ACS Pharmacol Transl Sci 2021;4:802-12. [PMID: 33860203 DOI: 10.1021/acsptsci.1c00004] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
52 Martins TS, Bott-neto JL, Oliveira Jr ON, Machado SA. Paper-based electrochemical sensors with reduced graphene nanoribbons for simultaneous detection of sulfamethoxazole and trimethoprim in water samples. Journal of Electroanalytical Chemistry 2021;882:114985. [DOI: 10.1016/j.jelechem.2021.114985] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 17.0] [Reference Citation Analysis]
53 Liu X, Zhao Y, Li F. Nucleic acid-functionalized metal-organic framework for ultrasensitive immobilization-free photoelectrochemical biosensing. Biosensors and Bioelectronics 2021;173:112832. [DOI: 10.1016/j.bios.2020.112832] [Cited by in Crossref: 6] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
54 Chen X, Chen Q, Chen M, Wang W, Sun C, Wang X, Ning P, Hou L, Feng Y, Meng X. Evaluating visually a new apoptosis-induced reagent by a ratiometric two-photon fluorescent pH probe. Sensors and Actuators B: Chemical 2021;329:129104. [DOI: 10.1016/j.snb.2020.129104] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
55 Zou R, Wang S, Chen C, Chen X, Gong H, Cai C. An enzyme-free DNA circuit-assisted MoS2 nanosheet enhanced fluorescence assay for label-free DNA detection. Talanta 2021;222:121505. [DOI: 10.1016/j.talanta.2020.121505] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
56 Sun Y, Qi T, Jin Y, Liang L, Zhao J. A signal-on fluorescent aptasensor based on gold nanoparticles for kanamycin detection. RSC Adv 2021;11:10054-60. [DOI: 10.1039/d0ra10602j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
57 Wu J, Lv W, Yang Q, Li H, Li F. Label-free homogeneous electrochemical detection of MicroRNA based on target-induced anti-shielding against the catalytic activity of two-dimension nanozyme. Biosensors and Bioelectronics 2021;171:112707. [DOI: 10.1016/j.bios.2020.112707] [Cited by in Crossref: 28] [Cited by in F6Publishing: 54] [Article Influence: 28.0] [Reference Citation Analysis]
58 Gao X, Pei L, Xue W, Huang H, Gao Z, Zhao X. Monodentate AIEgen Anchored on Metal‐Organic Framework for Fast Fluorescence Sensing of Phosphate. Chin J Chem 2021;39:99-105. [DOI: 10.1002/cjoc.202000364] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
59 He X, Zheng Z, Zhang F, Xu C, Xu W, Ye L, Sun X, Zhou Z, Shen J. Mitochondria-Targeted Chemosensor to Discriminately and Continuously Visualize HClO and H2S with Multiresponse Fluorescence Signals for In Vitro and In Vivo Bioimaging. ACS Appl Bio Mater 2020;3:7886-97. [PMID: 35019529 DOI: 10.1021/acsabm.0c01029] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
60 Yang F, Yang F, Tu TT, Liao N, Chai YQ, Yuan R, Zhuo Y. A synergistic promotion strategy remarkably accelerated electrochemiluminescence of SnO2 QDs for MicroRNA detection using 3D DNA walker amplification. Biosens Bioelectron 2020;173:112820. [PMID: 33227674 DOI: 10.1016/j.bios.2020.112820] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
61 Bao J, Zu X, Wang X, Li J, Fan D, Shi Y, Xia Q, Cheng J. Multifunctional Hf/Mn-TCPP Metal-Organic Framework Nanoparticles for Triple-Modality Imaging-Guided PTT/RT Synergistic Cancer Therapy. Int J Nanomedicine 2020;15:7687-702. [PMID: 33116495 DOI: 10.2147/IJN.S267321] [Cited by in Crossref: 3] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
62 Chen J, Chen X, Zhao J, Liu S, Chi Z. Instrument-free and visual detection of organophosphorus pesticide using a smartphone by coupling aggregation-induced emission nanoparticle and two-dimension MnO2 nanoflake. Biosens Bioelectron 2020;170:112668. [PMID: 33032200 DOI: 10.1016/j.bios.2020.112668] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 8.5] [Reference Citation Analysis]
63 Ni P, Liu S, Jiang Y, Chen C, Wang B, Zhang C, Chen J, Lu Y. In Situ Formation of 2,3-Diaminophenazine for Evaluation of Alkaline Phosphatase Activity via the Inner Filter Effect. ACS Appl Bio Mater 2020;3:6394-9. [PMID: 35021770 DOI: 10.1021/acsabm.0c00832] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
64 Lu F, Yang L, Hou T, Li F. Label-free and "signal-on" homogeneous photoelectrochemical cytosensing strategy for ultrasensitive cancer cell detection. Chem Commun (Camb) 2020;56:11126-9. [PMID: 32959814 DOI: 10.1039/d0cc04516k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
65 Lv W, Yang Q, Li Q, Li H, Li F. Quaternary Ammonium Salt-Functionalized Tetraphenylethene Derivative Boosts Electrochemiluminescence for Highly Sensitive Aqueous-Phase Biosensing. Anal Chem 2020;92:11747-54. [DOI: 10.1021/acs.analchem.0c01796] [Cited by in Crossref: 13] [Cited by in F6Publishing: 21] [Article Influence: 6.5] [Reference Citation Analysis]
66 Wang H, Zhang P, Zhang C, Chen S, Zeng R, Cui J, Chen J. A rational design of a cancer-specific and lysosome-targeted fluorescence nanoprobe for glutathione imaging in living cells. Mater Adv 2020;1:1739-44. [DOI: 10.1039/d0ma00124d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
67 Wang X, Zha J, Zhang W, Zhang W, Tang B. In vivo pharmacodynamic evaluation of antidepressants based on flux mitochondrial Cys in living mice via near infrared fluorescence imaging. Analyst 2020;145:6119-24. [DOI: 10.1039/d0an01364a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
68 Sun J, Wang R, Xia M, Zhu S, Zhao X. Convenient and sensitive colorimetric determination of alendronate sodium with Ce 4+ -triggered oxidation of TMB. New J Chem 2020;44:12962-6. [DOI: 10.1039/d0nj02816a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]