BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Peng Q, Yan X, Shi X, Ou S, Gu H, Yin X, Shi G, Yu Y. In vivo monitoring of superoxide anion from Alzheimer's rat brains with functionalized ionic liquid polymer decorated microsensor. Biosensors and Bioelectronics 2019;144:111665. [DOI: 10.1016/j.bios.2019.111665] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
Number Citing Articles
1 Xiao X, Li C, Liu Y, Feng Y, Han K, Xiang H, Shi G, Gu H. A ratiometric electrochemical microsensor for monitoring chloride ions in vivo. Analyst 2021;146:6202-10. [PMID: 34519726 DOI: 10.1039/d1an01370j] [Reference Citation Analysis]
2 Brainina KZ, Shpigun LK. State‐of‐the‐art electrochemistry for the assessment of oxidative stress and integral antioxidant activity of biological environments. Electrochemical Science Adv. [DOI: 10.1002/elsa.202100219] [Reference Citation Analysis]
3 Gao Q, Zhao H, Wang Z, Cai X, Zhou L, Lan M. Fabrication of hierarchically porous carbon networks for the electrochemical determination of superoxide anion released from living cells. Sensors and Actuators B: Chemical 2021;330:129309. [DOI: 10.1016/j.snb.2020.129309] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
4 Deshpande AS, Muraoka W, Andreescu S. Electrochemical sensors for oxidative stress monitoring. Current Opinion in Electrochemistry 2021;29:100809. [DOI: 10.1016/j.coelec.2021.100809] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Liu F, Jiang X, He N, Yu R, Xue Z, Liu X. Electrochemical investigation for enhancing cellular antioxidant defense system based on a superoxide anion sensor. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.132190] [Reference Citation Analysis]
6 Choi HK, Lee JH, Lee T, Lee SN, Choi JW. Flexible Electronics for Monitoring in vivo Electrophysiology and Metabolite Signals. Front Chem 2020;8:547591. [PMID: 33330353 DOI: 10.3389/fchem.2020.547591] [Reference Citation Analysis]
7 Kumari R, Dkhar DS, Mahapatra S, Divya, Kumar R, Chandra P. Nano-bioengineered sensing technologies for real-time monitoring of reactive oxygen species in in vitro and in vivo models. Microchemical Journal 2022;180:107615. [DOI: 10.1016/j.microc.2022.107615] [Reference Citation Analysis]
8 Marinesco S. Micro- and nano-electrodes for neurotransmitter monitoring. Current Opinion in Electrochemistry 2021;29:100746. [DOI: 10.1016/j.coelec.2021.100746] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
9 Toyos-Rodríguez C, García-Alonso FJ, de la Escosura-Muñiz A. Electrochemical Biosensors Based on Nanomaterials for Early Detection of Alzheimer's Disease. Sensors (Basel) 2020;20:E4748. [PMID: 32842632 DOI: 10.3390/s20174748] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
10 Zhang Z, Li M, Zuo Y, Chen S, Zhuo Y, Lu M, Shi G, Gu H. In Vivo Monitoring of pH in Subacute PD Mouse Brains with a Ratiometric Electrochemical Microsensor Based on Poly(melamine) Films. ACS Sens 2022;7:235-44. [PMID: 34936337 DOI: 10.1021/acssensors.1c02051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Zhao S, Zang G, Zhang Y, Liu H, Wang N, Cai S, Durkan C, Xie G, Wang G. Recent advances of electrochemical sensors for detecting and monitoring ROS/RNS. Biosensors and Bioelectronics 2021;179:113052. [DOI: 10.1016/j.bios.2021.113052] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
12 Li C, Zhuo Y, Xiao X, Li S, Han K, Lu M, Zhang J, Chen S, Gu H. Facile Electrochemical Microbiosensor Based on In Situ Self-Assembly of Ag Nanoparticles Coated on Ti3C2Tx for In Vivo Measurements of Chloride Ions in the PD Mouse Brain. Anal Chem 2021;93:7647-56. [PMID: 34014093 DOI: 10.1021/acs.analchem.1c00342] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Peng Q, Shi X, Yan X, Ji L, Hu Y, Shi G, Yu Y. Electrochemical Strategy for Analyzing the Co-evolution of Cu 2+ and OH Levels at the Early Stages of Transgenic AD Mice. ACS Appl Mater Interfaces 2020;12:42595-603. [DOI: 10.1021/acsami.0c13759] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Geraskevich AV, Solomonenko AN, Dorozhko EV, Korotkova EI, Barek J. Electrochemical Sensors for the Detection of Reactive Oxygen Species in Biological Systems: A Critical Review. Crit Rev Anal Chem 2022;:1-33. [PMID: 35867547 DOI: 10.1080/10408347.2022.2098669] [Reference Citation Analysis]
15 Luo Y, Lin R, Zuo Y, Zhang Z, Zhuo Y, Lu M, Chen S, Gu H. Efficient Electrochemical Microsensor for In Vivo Monitoring of H2O2 in PD Mouse Brain: Rational Design and Synthesis of Recognition Molecules. Anal Chem 2022. [PMID: 35694821 DOI: 10.1021/acs.analchem.2c01570] [Reference Citation Analysis]