BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sun D, Luo Z, Lu J, Zhang S, Che T, Chen Z, Zhang L. Electrochemical dual-aptamer-based biosensor for nonenzymatic detection of cardiac troponin I by nanohybrid electrocatalysts labeling combined with DNA nanotetrahedron structure. Biosens Bioelectron 2019;134:49-56. [PMID: 30954926 DOI: 10.1016/j.bios.2019.03.049] [Cited by in Crossref: 44] [Cited by in F6Publishing: 32] [Article Influence: 14.7] [Reference Citation Analysis]
Number Citing Articles
1 Cheng D, Zhou Z, Shang S, Wang H, Guan H, Yang H, Liu Y. Electrochemical immunosensor for highly sensitive detection of cTnI via in-situ initiated ROP signal amplification strategy. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.340032] [Reference Citation Analysis]
2 Bao C, Liu X, Shao X, Ren X, Zhang Y, Sun X, Fan D, Wei Q, Ju H. Cardiac troponin I photoelectrochemical sensor: {Mo368} as electrode donor for Bi2S3 and Au co-sensitized FeOOH composite. Biosens Bioelectron 2020;157:112157. [PMID: 32250931 DOI: 10.1016/j.bios.2020.112157] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
3 Yin X, Yang P, Zhang H, Zhu Q, Yuan R, Li Y, Liang W. Hydrophobic-Driven Electrochemiluminescence Enhancement via Target-Induced Self-Enrichment for Ultrasensitive Bioassay. Anal Chem 2020;92:15120-8. [DOI: 10.1021/acs.analchem.0c03394] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
4 Liu Z, Lei S, Zou L, Li G, Ye B. Grafting homogenous electrochemical biosensing strategy based on reverse proximity ligation and Exo III assisted target circulation for multiplexed communicable disease DNA assay. Biosens Bioelectron 2020;167:112487. [PMID: 32810705 DOI: 10.1016/j.bios.2020.112487] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
5 Campu A, Muresan I, Craciun A, Cainap S, Astilean S, Focsan M. Cardiac Troponin Biosensor Designs: Current Developments and Remaining Challenges. IJMS 2022;23:7728. [DOI: 10.3390/ijms23147728] [Reference Citation Analysis]
6 Sun D, Lin X, Lu J, Wei P, Luo Z, Lu X, Chen Z, Zhang L. DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme. Biosens Bioelectron 2019;142:111578. [PMID: 31422223 DOI: 10.1016/j.bios.2019.111578] [Cited by in Crossref: 33] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
7 Yoo SS, Kim SY, Kim KS, Hong S, Oh MJ, Nam MG, Kim W, Park J, Chung C, Choe W, Yoo PJ. Controlling inter-sheet-distance in reduced graphene oxide electrodes for highly sensitive electrochemical impedimetric sensing of myoglobin. Sensors and Actuators B: Chemical 2020;305:127477. [DOI: 10.1016/j.snb.2019.127477] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
8 Yuan Z, Wang L, Chen J, Su W, Li A, Su G, Liu P, Zhou X. Electrochemical strategies for the detection of cTnI. Analyst 2021;146:5474-95. [PMID: 34515706 DOI: 10.1039/d1an00808k] [Reference Citation Analysis]
9 Crapnell RD, Dempsey NC, Sigley E, Tridente A, Banks CE. Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine - a review. Microchim Acta 2022;189. [DOI: 10.1007/s00604-022-05186-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Ma F, Ge G, Fang Y, Ni E, Su Y, Cai F, Xie H. Prussian blue-doped PAMAM dendrimer nanospheres for electrochemical immunoassay of human plasma cardiac troponin I without enzymatic amplification. New J Chem 2021;45:9621-8. [DOI: 10.1039/d1nj01506k] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Dourandish Z, Tajik S, Beitollahi H, Jahani PM, Nejad FG, Sheikhshoaie I, Di Bartolomeo A. A Comprehensive Review of Metal-Organic Framework: Synthesis, Characterization, and Investigation of Their Application in Electrochemical Biosensors for Biomedical Analysis. Sensors (Basel) 2022;22:2238. [PMID: 35336408 DOI: 10.3390/s22062238] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Fu X, Peng F, Lee J, Yang Q, Zhang F, Xiong M, Kong G, Meng HM, Ke G, Zhang XB. Aptamer-Functionalized DNA Nanostructures for Biological Applications. Top Curr Chem (Cham) 2020;378:21. [PMID: 32030541 DOI: 10.1007/s41061-020-0283-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Azzouz A, Hejji L, Sonne C, Kim KH, Kumar V. Nanomaterial-based aptasensors as an efficient substitute for cardiovascular disease diagnosis: Future of smart biosensors. Biosens Bioelectron 2021;193:113617. [PMID: 34555756 DOI: 10.1016/j.bios.2021.113617] [Reference Citation Analysis]
14 Xin Y, Yang R, Qu Y, Liu H, Feng Y, Li L, Shi W, Liu Q. Novel, Highly Sensitive, and Specific Assay to Monitor Acute Myocardial Infarction (AMI) by the Determination of Cardiac Troponin I (cTnI) and Heart-Type Fatty Acid Binding Protein (H-FABP) by a Colloidal Gold-Based Immunochromatographic Test Strip. Analytical Letters 2021;54:1329-50. [DOI: 10.1080/00032719.2020.1802594] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Ou X, Dai J, Huang Y, Xiong X, Zheng Z, Lou X, Xia F. AIEgens assisted label free DNA supersandwich immunoassay for ultrasensitive α-fetoprotein detection. Giant 2022;11:100110. [DOI: 10.1016/j.giant.2022.100110] [Reference Citation Analysis]
16 Liu C, Li J, Pang H. Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coordination Chemistry Reviews 2020;410:213222. [DOI: 10.1016/j.ccr.2020.213222] [Cited by in Crossref: 120] [Cited by in F6Publishing: 47] [Article Influence: 60.0] [Reference Citation Analysis]
17 Yu R, Wang R, Wang Z, Zhu Q, Dai Z. Applications of DNA-nanozyme-based sensors. Analyst 2021;146:1127-41. [PMID: 33507167 DOI: 10.1039/d0an02368j] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Reference Citation Analysis]
19 Negahdary M. Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review. Biosens Bioelectron 2020;152:112018. [PMID: 32056737 DOI: 10.1016/j.bios.2020.112018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 14.0] [Reference Citation Analysis]
20 Li J, Zhang S, Zhang L, Zhang Y, Zhang H, Zhang C, Xuan X, Wang M, Zhang J, Yuan Y. A Novel Graphene-Based Nanomaterial Modified Electrochemical Sensor for the Detection of Cardiac Troponin I. Front Chem 2021;9:680593. [PMID: 34055747 DOI: 10.3389/fchem.2021.680593] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Pourali A, Barar J, Rashidi MR, Pavon-djavid G, Omidi Y. Ultra-sensitive facile CdS nanocrystals-based electrochemical biosensor to detect myocardial infarction marker troponin. Microchemical Journal 2021;165:106107. [DOI: 10.1016/j.microc.2021.106107] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
22 Han K, Li G, Tian L, Li L, Shi Y, Huang T, Li Y, Xu Q. Multifunctional peptide-oligonucleotide conjugate promoted sensitive electrochemical biosensing of cardiac troponin I. Biochemical Engineering Journal 2021;174:108104. [DOI: 10.1016/j.bej.2021.108104] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Yagati AK, Behrent A, Beck S, Rink S, Goepferich AM, Min J, Lee MH, Baeumner AJ. Laser-induced graphene interdigitated electrodes for label-free or nanolabel-enhanced highly sensitive capacitive aptamer-based biosensors. Biosens Bioelectron 2020;164:112272. [PMID: 32553348 DOI: 10.1016/j.bios.2020.112272] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
24 Mi X, Li H, Tan R, Feng B, Tu Y. The TDs/aptamer cTnI biosensors based on HCR and Au/Ti3C2-MXene amplification for screening serious patient in COVID-19 pandemic. Biosens Bioelectron 2021;192:113482. [PMID: 34256261 DOI: 10.1016/j.bios.2021.113482] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Nur Topkaya S, Cetin AE. Electrochemical Aptasensors for Biological and Chemical Analyte Detection. Electroanalysis 2021;33:277-91. [DOI: 10.1002/elan.202060388] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Ahmadi A, Khoshfetrat SM, Mirzaeizadeh Z, Kabiri S, Rezaie J, Omidfar K. Electrochemical immunosensor for determination of cardiac troponin I using two-dimensional metal-organic framework/Fe3O4-COOH nanosheet composites loaded with thionine and pCTAB/DES modified electrode. Talanta 2022;237:122911. [PMID: 34736648 DOI: 10.1016/j.talanta.2021.122911] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
27 Rahman MM, Lopa NS, Lee J. Advances in electrochemical aptasensing for cardiac biomarkers. Bulletin Korean Chem Soc. [DOI: 10.1002/bkcs.12434] [Reference Citation Analysis]
28 Mahmudunnabi RG, Farhana FZ, Kashaninejad N, Firoz SH, Shim YB, Shiddiky MJA. Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 2020;145:4398-420. [PMID: 32436931 DOI: 10.1039/d0an00558d] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
29 Li D, Xiong Q, Lu D, Chen Y, Liang L, Duan H. Magnetic nanochains-based dynamic ELISA for rapid and ultrasensitive detection of acute myocardial infarction biomarkers. Anal Chim Acta 2021;1166:338567. [PMID: 34022991 DOI: 10.1016/j.aca.2021.338567] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
30 Han Y, Su X, Fan L, Liu Z, Guo Y. Electrochemical aptasensor for sensitive detection of Cardiac troponin I based on CuNWs/MoS2/rGO nanocomposite. Microchemical Journal 2021;169:106598. [DOI: 10.1016/j.microc.2021.106598] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
31 Pourali A, Rashidi MR, Barar J, Pavon-djavid G, Omidi Y. Voltammetric biosensors for analytical detection of cardiac troponin biomarkers in acute myocardial infarction. TrAC Trends in Analytical Chemistry 2021;134:116123. [DOI: 10.1016/j.trac.2020.116123] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
32 Villalonga A, Mayol B, Villalonga R, Vilela D. Electrochemical aptasensors for clinical diagnosis. A review of the last five years. Sensors and Actuators B: Chemical 2022;369:132318. [DOI: 10.1016/j.snb.2022.132318] [Reference Citation Analysis]
33 Duque-Ossa LC, García-Ferrera B, Reyes-Retana JA. Troponin I as a Biomarker for Early Detection of Acute Myocardial Infarction. Curr Probl Cardiol 2021;:101067. [PMID: 34826431 DOI: 10.1016/j.cpcardiol.2021.101067] [Reference Citation Analysis]
34 Ni E, Fang Y, Ma F, Ge G, Wu J, Wang Y, Lin Y, Xie H. A one-step potentiometric immunoassay for plasma cardiac troponin I using an antibody-functionalized bis-MPA-COOH dendrimer as a competitor with improved sensitivity. Anal Methods 2020;12:2914-21. [PMID: 32930214 DOI: 10.1039/d0ay00680g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
35 Gu Y, Li Y, Ren D, Sun L, Zhuang Y, Yi L, Wang S. Recent advances in nanomaterial‐assisted electrochemical sensors for food safety analysis. Food Frontiers. [DOI: 10.1002/fft2.143] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
36 Villalonga A, Estabiel I, Pérez-Calabuig AM, Mayol B, Parrado C, Villalonga R. Amperometric aptasensor with sandwich-type architecture for troponin I based on carboxyethylsilanetriol-modified graphene oxide coated electrodes. Biosens Bioelectron 2021;183:113203. [PMID: 33823466 DOI: 10.1016/j.bios.2021.113203] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Lu J, Hu Y, Wang P, Liu P, Chen Z, Sun D. Electrochemical biosensor based on gold nanoflowers-encapsulated magnetic metal-organic framework nanozymes for drug evaluation with in-situ monitoring of H2O2 released from H9C2 cardiac cells. Sensors and Actuators B: Chemical 2020;311:127909. [DOI: 10.1016/j.snb.2020.127909] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
38 Huang X, Zhang S, Tang Y, Zhang X, Bai Y, Pang H. Advances in metal–organic framework-based nanozymes and their applications. Coordination Chemistry Reviews 2021;449:214216. [DOI: 10.1016/j.ccr.2021.214216] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
39 Dhara K, Mahapatra DR. Review on electrochemical sensing strategies for C-reactive protein and cardiac troponin I detection. Microchemical Journal 2020;156:104857. [DOI: 10.1016/j.microc.2020.104857] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
40 Rasheed T, Rizwan K. Metal-organic frameworks based hybrid nanocomposites as state-of-the-art analytical tools for electrochemical sensing applications. Biosens Bioelectron 2021;199:113867. [PMID: 34890884 DOI: 10.1016/j.bios.2021.113867] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
41 Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther 2022;7:231. [PMID: 35817770 DOI: 10.1038/s41392-022-01082-z] [Reference Citation Analysis]
42 Lou-Franco J, Das B, Elliott C, Cao C. Gold Nanozymes: From Concept to Biomedical Applications. Nanomicro Lett 2020;13:10. [PMID: 34138170 DOI: 10.1007/s40820-020-00532-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
43 Zhu L, Ye J, Yan M, Zhu Q, Yang X. A wavelength-resolved electrochemiluminescence resonance energy transfer ratiometric immunosensor for detection of cardiac troponin I. Analyst 2019;144:6554-60. [PMID: 31576385 DOI: 10.1039/c9an01445d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
44 Du X, Su X, Zhang W, Yi S, Zhang G, Jiang S, Li H, Li S, Xia F. Progress, Opportunities, and Challenges of Troponin Analysis in the Early Diagnosis of Cardiovascular Diseases. Anal Chem 2021. [PMID: 34843218 DOI: 10.1021/acs.analchem.1c04476] [Reference Citation Analysis]
45 Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021;121:13797-868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
46 Karimzadeh Z, Mahmoudpour M, Guardia MDL, Nazhad Dolatabadi JE, Jouyban A. Aptamer-functionalized metal organic frameworks as an emerging nanoprobe in the food safety field: Promising development opportunities and translational challenges. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116622] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
47 Tran VT, Ju H. Fluorescence Based on Surface Plasmon Coupled Emission for Ultrahigh Sensitivity Immunoassay of Cardiac Troponin I. Biomedicines 2021;9:448. [PMID: 33919217 DOI: 10.3390/biomedicines9050448] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Ziółkowski R, Jarczewska M, Górski Ł, Malinowska E. From Small Molecules Toward Whole Cells Detection: Application of Electrochemical Aptasensors in Modern Medical Diagnostics. Sensors (Basel) 2021;21:724. [PMID: 33494499 DOI: 10.3390/s21030724] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
49 Dolati S, Soleymani J, Kazem Shakouri S, Mobed A. The trends in nanomaterial-based biosensors for detecting critical biomarkers in stroke. Clin Chim Acta 2021;514:107-21. [PMID: 33388306 DOI: 10.1016/j.cca.2020.12.034] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
50 Wang Y, Liu X, Wu L, Ding L, Effah CY, Wu Y, Xiong Y, He L. Construction and bioapplications of aptamer-based dual recognition strategy. Biosens Bioelectron 2022;195:113661. [PMID: 34592501 DOI: 10.1016/j.bios.2021.113661] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
51 Wang Z, Zhao H, Chen K, Li H, Lan M. Sandwich-type electrochemical aptasensor based on hollow mesoporous carbon spheres loaded with porous dendritic Pd@Pt nanoparticles as signal amplifier for ultrasensitive detection of cardiac troponin I. Anal Chim Acta 2021;1188:339202. [PMID: 34794569 DOI: 10.1016/j.aca.2021.339202] [Reference Citation Analysis]
52 Pietrzak M, Ivanova P. Bimetallic and multimetallic nanoparticles as nanozymes. Sensors and Actuators B: Chemical 2021;336:129736. [DOI: 10.1016/j.snb.2021.129736] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
53 Liu LS, Wang F, Ge Y, Lo PK. Recent Developments in Aptasensors for Diagnostic Applications. ACS Appl Mater Interfaces 2021;13:9329-58. [PMID: 33155468 DOI: 10.1021/acsami.0c14788] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
54 Chen Y, Wang Z, Liu S, Zhao G. A highly sensitive and group-targeting aptasensor for total phthalate determination in the environment. J Hazard Mater 2021;412:125174. [PMID: 33524734 DOI: 10.1016/j.jhazmat.2021.125174] [Reference Citation Analysis]
55 Mishyn V, Rodrigues T, Leroux YR, Butruille L, Woitrain E, Montaigne D, Aspermair P, Happy H, Knoll W, Boukherroub R, Szunerits S. Electrochemical and electronic detection of biomarkers in serum: a systematic comparison using aptamer-functionalized surfaces. Anal Bioanal Chem 2021. [PMID: 34595559 DOI: 10.1007/s00216-021-03658-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Yuan H, Tsai T, Wang H, Chien Y, Chen C, Chu C, Ho C, Chu P, Chen C. A manual and portable centrifuge combined with a paper-based immunoassay for myocardial infarction diagnosis. Chemical Engineering Journal 2021;409:128131. [DOI: 10.1016/j.cej.2020.128131] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 McConnell EM, Cozma I, Morrison D, Li Y. Biosensors Made of Synthetic Functional Nucleic Acids Toward Better Human Health. Anal Chem 2020;92:327-44. [PMID: 31656066 DOI: 10.1021/acs.analchem.9b04868] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 8.0] [Reference Citation Analysis]
58 Feng XQ, Ju Y, Dou WT, Li Q, Jin ZG, He XP, James TD, Ye BC. Ferrocene-Labelled Electroactive Aptamer-Based Sensors (Aptasensors) for Glycated Haemoglobin. Molecules 2021;26:7077. [PMID: 34885660 DOI: 10.3390/molecules26237077] [Reference Citation Analysis]
59 Gupta A, Sharma SK, Pachauri V, Ingebrandt S, Singh S, Sharma AL, Deep A. Sensitive impedimetric detection of troponin I with metal–organic framework composite electrode. RSC Adv 2021;11:2167-74. [DOI: 10.1039/d0ra06665f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
60 Tian J, Liang Z, Hu O, He Q, Sun D, Chen Z. An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochimica Acta 2021;387:138553. [DOI: 10.1016/j.electacta.2021.138553] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 16.0] [Reference Citation Analysis]
61 Vanova V, Mitrevska K, Milosavljevic V, Hynek D, Richtera L, Adam V. Peptide-based electrochemical biosensors utilized for protein detection. Biosens Bioelectron 2021;180:113087. [PMID: 33662844 DOI: 10.1016/j.bios.2021.113087] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
62 Su Z, Tang D, Liu J, Yang X, Xu S, Xu W, Zhou Y, Xu M, Yi J, Jiang H, Shao Y, Qin X. Electrochemically-assisted deposition of toluidine blue-functionalized metal-organic framework films for electrochemical immunosensing of Indole-3-acetic acid. Journal of Electroanalytical Chemistry 2021;880:114855. [DOI: 10.1016/j.jelechem.2020.114855] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]