BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu M, Khan A, Wang Z, Liu Y, Yang G, Deng Y, He N. Aptasensors for pesticide detection. Biosens Bioelectron 2019;130:174-84. [PMID: 30738246 DOI: 10.1016/j.bios.2019.01.006] [Cited by in Crossref: 81] [Cited by in F6Publishing: 110] [Article Influence: 27.0] [Reference Citation Analysis]
Number Citing Articles
1 Liu Y, Liu B, Xia L, Yu H, Wang Q, Wu Y. Cationic polyelectrolyte as powerful capture molecule in aptamer-based chromatographic strip for rapid visual detection of paraquat residue in agricultural products. Sensors and Actuators B: Chemical 2022;368:132237. [DOI: 10.1016/j.snb.2022.132237] [Reference Citation Analysis]
2 Fama F, Feltracco M, Moro G, Barbaro E, Bassanello M, Gambaro A, Zanardi C. Pesticides monitoring in biological fluids: Mapping the gaps in analytical strategies. Talanta 2022;253:123969. [PMID: 36191513 DOI: 10.1016/j.talanta.2022.123969] [Reference Citation Analysis]
3 Xing T, Qian Q, Ye H, Wang Z, Jin Y, Zhang N, Wang M, Zhou Y, Gao X, Wu L. Gold nanoparticles with helical surface structure transformed from chiral molecules for SERS-active substrates preparation. Biosensors and Bioelectronics 2022;212:114430. [DOI: 10.1016/j.bios.2022.114430] [Reference Citation Analysis]
4 Wang Y, Zhu F, Yin L, Qu G, Ma D, Leung C, Lu L. Ratiometric fluorescent detection of pesticide based on split aptamer and magnetic separation. Sensors and Actuators B: Chemical 2022;367:132045. [DOI: 10.1016/j.snb.2022.132045] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Feng Y, Wang X, Chang Y, Guo J, Wang C. Sensitive and handy detection of pesticide residue on fruit surface based on single microsphere surface-enhanced Raman spectroscopy technique. J Colloid Interface Sci 2022;628:116-28. [PMID: 35987151 DOI: 10.1016/j.jcis.2022.08.045] [Reference Citation Analysis]
6 Wang J, Sun X, Pan W, Wang J. A fluorescence and phosphorescence dual-signal readout platform based on carbon dots/SiO2 for multi-channel detections of carbaryl, thiram and chlorpyrifos. Microchemical Journal 2022;178:107408. [DOI: 10.1016/j.microc.2022.107408] [Reference Citation Analysis]
7 Jara MDL, Alvarez LAC, Guimarães MCC, Antunes PWP, de Oliveira JP. Lateral flow assay applied to pesticides detection: recent trends and progress. Environ Sci Pollut Res Int 2022;29:46487-508. [PMID: 35507227 DOI: 10.1007/s11356-022-20426-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Kumaran A, Vashishth R, Singh S, U S, James A, Velayudhaperumal Chellam P. Biosensors for detection of organophosphate pesticides: Current technologies and future directives. Microchemical Journal 2022;178:107420. [DOI: 10.1016/j.microc.2022.107420] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Qin T, Zhao X, Lv T, Yao G, Xu Z, Wang L, Zhao C, Xu H, Liu B, Peng X. General Method for Pesticide Recognition Using Albumin-Based Host-Guest Ensembles. ACS Sens 2022. [PMID: 35776632 DOI: 10.1021/acssensors.2c00803] [Reference Citation Analysis]
10 Liu Y, Deng Y, Li S, Wang-ngai Chow F, Liu M, He N. Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends in Food Science & Technology 2022;125:200-35. [DOI: 10.1016/j.tifs.2022.04.008] [Reference Citation Analysis]
11 Zhang C, Zhou J, Ma T, Guo W, Wei D, Tan Y, Deng Y. Advances in application of sensors for determination of phthalate esters. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.07.013] [Reference Citation Analysis]
12 Li T, Wang J, Zhu L, Li C, Chang Q, Xu W. Advanced screening and tailoring strategies of pesticide aptamer for constructing biosensor. Crit Rev Food Sci Nutr 2022;:1-21. [PMID: 35699641 DOI: 10.1080/10408398.2022.2086210] [Reference Citation Analysis]
13 Issaka E, Fapohunda FO, Amu-Darko JNO, Yeboah L, Yakubu S, Varjani S, Ali N, Bilal M. Biochar-based composites for remediation of polluted wastewater and soil environments: Challenges and prospects. Chemosphere 2022;297:134163. [PMID: 35240157 DOI: 10.1016/j.chemosphere.2022.134163] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
14 Zhan X, Tang Y, Liu Y, Tao H, Wu Y. A novel colorimetric strategy for rapid detection of dimethoate residue in vegetables based on enhancing oxidase-mimicking catalytic activity of cube-shape Ag2O particles. Sensors and Actuators B: Chemical 2022;361:131720. [DOI: 10.1016/j.snb.2022.131720] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Park B, Dang TV, Yoo J, Tran TD, Ghoreishian SM, Lee GH, Il Kim M, Huh YS. Silver Nanoparticle-coated Polydopamine-Copper Hybrid Nanoflowers as Ultrasensitive Surface-enhanced Raman Spectroscopy Probes for Detecting Thiol-Containing Molecules. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.132246] [Reference Citation Analysis]
16 Lim MC, Lim ES, Lim JA, Choi SW, Chang HJ. Efficient Screening of Pesticide Diazinon-Binding Aptamers Using the Sol-Gel-Coated Nanoporous Membrane-Assisted SELEX Process and Next-Generation Sequencing. Appl Biochem Biotechnol 2022. [PMID: 35556210 DOI: 10.1007/s12010-022-03947-z] [Reference Citation Analysis]
17 Heidari M, Ghaffarinejad A, Omidinia E. Screening of hepatitis B virus DNA in the serum sample by a new sensitive electrochemical genosensor-based Pd-Al LDH substrate. J Solid State Electrochem. [DOI: 10.1007/s10008-022-05176-0] [Reference Citation Analysis]
18 Shen Y, Wei Y, Zhu C, Cao J, Han D. Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coordination Chemistry Reviews 2022;458:214442. [DOI: 10.1016/j.ccr.2022.214442] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
19 Wang X, Hu Y, Zhang P, Tang C. To investigation of the correlation between serum IL-6, IL-8, and TNF-a levels and Helicobacter pylori infection in gastric cancer patients based on drug-loaded magnetic nanoparticles. Appl Nanosci. [DOI: 10.1007/s13204-022-02464-z] [Reference Citation Analysis]
20 Liu Y, Li T, Yang G, Deng Y, Mou X, He N. A simple AuNPs-based colorimetric aptasensor for chlorpyrifos detection. Chinese Chemical Letters 2022;33:1913-6. [DOI: 10.1016/j.cclet.2021.11.025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 9.0] [Reference Citation Analysis]
21 Sohrabi N, Mohammadi R, Ghassemzadeh HR, Heris SSS. Design and synthesis of a new magnetic molecularly imprinted polymer nanocomposite for specific adsorption and separation of diazinon insecticides from aqueous media. Microchemical Journal 2022;175:107087. [DOI: 10.1016/j.microc.2021.107087] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
22 Wu Z, Hu Y, Pan X, Tang Y, Dai Y, Wu Y. A liquid colorimetric chemosensor for ultrasensitive detection of glyphosate residues in vegetables using a metal oxide with intrinsic peroxidase catalytic activity. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022;39:710-23. [PMID: 35104180 DOI: 10.1080/19440049.2021.2020912] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Guo W, Wei D, Wang-ngai Chow F, Hang-mei Leung P, Wang H, Cai L, Hori M, Chen Z, Li S, Deng Y. Phoxim-specific DNA aptamer screening, characterization and application in a multiple complementary strands fluorescent aptasensor. Smart Materials in Medicine 2022. [DOI: 10.1016/j.smaim.2022.03.003] [Reference Citation Analysis]
24 Yao X, Yang Q, Wang Y, Bi C, Du H, Wu W. Dual-Enzyme-Based Signal-Amplified Aptasensor for Zearalenone Detection by Using CRISPR-Cas12a and Nt.AlwI. Foods 2022;11:487. [DOI: 10.3390/foods11030487] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Wan N, Chang Q, Hou F, Li J, Zang X, Zhang S, Wang C, Wang Z. Efficient solid-phase microextraction of twelve halogens-containing environmental hormones from fruits and vegetables by triazine-based conjugated microporous polymer coating. Analytica Chimica Acta 2022;1195:339458. [DOI: 10.1016/j.aca.2022.339458] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
26 Hu J, Zou Y, Sun B, Yu X, Shang Z, Huang J, Jin S, Liang P. Raman spectrum classification based on transfer learning by a convolutional neural network: Application to pesticide detection. Spectrochim Acta A Mol Biomol Spectrosc 2022;265:120366. [PMID: 34509888 DOI: 10.1016/j.saa.2021.120366] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
27 Zhang X, Liao X, Hou Y, Jia B, Fu L, Jia M, Zhou L, Lu J, Kong W. Recent advances in synthesis and modification of carbon dots for optical sensing of pesticides. J Hazard Mater 2021;422:126881. [PMID: 34449329 DOI: 10.1016/j.jhazmat.2021.126881] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 20.0] [Reference Citation Analysis]
28 Zhang N, Li J, Liu B, Zhang D, Zhang C, Guo Y, Chu X, Wang W, Wang H, Yan X, Li Z. Signal enhancing strategies in aptasensors for the detection of small molecular contaminants by nanomaterials and nucleic acid amplification. Talanta 2022;236:122866. [PMID: 34635248 DOI: 10.1016/j.talanta.2021.122866] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 15.0] [Reference Citation Analysis]
29 Zhao Y, Yavari K, Liu J. Critical evaluation of aptamer binding for biosensor designs. TrAC Trends in Analytical Chemistry 2022;146:116480. [DOI: 10.1016/j.trac.2021.116480] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
30 Wang K, Wang Y, Li Q, Liu Z, Liu S. A fluorescence and localized surface plasmon resonance dual-readout sensing strategy for detection of acetamiprid and organophosphorus pesticides. Sensors and Actuators B: Chemical 2022;351:130977. [DOI: 10.1016/j.snb.2021.130977] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
31 Umapathi R, Park B, Sonwal S, Rani GM, Cho Y, Huh YS. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends in Food Science & Technology 2022;119:69-89. [DOI: 10.1016/j.tifs.2021.11.018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 17.0] [Reference Citation Analysis]
32 Xi S, Wang L, Cheng M, Hu M, Liu R, Dong Y. Developing a DNA logic gate nanosensing platform for the detection of acetamiprid. RSC Adv 2022;12:27421-30. [DOI: 10.1039/d2ra04794b] [Reference Citation Analysis]
33 Grabowska I, Hepel M, Kurzątkowska-Adaszyńska K. Advances in Design Strategies of Multiplex Electrochemical Aptasensors. Sensors (Basel) 2021;22:161. [PMID: 35009703 DOI: 10.3390/s22010161] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Deffo G, Temgoua RCT, Tajeu KY, Njanja E, Doungmo G, Tonle IK, Ngameni E. Signal amplification by electropolymerization of alizarin red S for improved diuron detection at organosmectite modified glassy carbon electrode. J Chinese Chemical Soc. [DOI: 10.1002/jccs.202100387] [Reference Citation Analysis]
35 Gong C, Fan Y, Zhao H. Recent advances and perspectives of enzyme-based optical biosensing for organophosphorus pesticides detection. Talanta 2021;240:123145. [PMID: 34968808 DOI: 10.1016/j.talanta.2021.123145] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
36 Huang J, Xiang Y, Li J, Kong Q, Zhai H, Xu R, Yang F, Sun X, Guo Y. A novel electrochemiluminescence aptasensor based on copper-gold bimetallic nanoparticles and its applications. Biosens Bioelectron 2021;194:113601. [PMID: 34530372 DOI: 10.1016/j.bios.2021.113601] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
37 Tang X, Feng C, Pan Q, Sun F, Zhu X. Engineered aptamer for the analysis of cells. TrAC Trends in Analytical Chemistry 2021;145:116456. [DOI: 10.1016/j.trac.2021.116456] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Trinh KH, Kadam US, Rampogu S, Cho Y, Yang KA, Kang CH, Lee KW, Lee KO, Chung WS, Hong JC. Development of novel fluorescence-based and label-free noncanonical G4-quadruplex-like DNA biosensor for facile, specific, and ultrasensitive detection of fipronil. J Hazard Mater 2021;:127939. [PMID: 34893377 DOI: 10.1016/j.jhazmat.2021.127939] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
39 Chen Z, Zhao Z, Yang J, Gao X, Sang X, Khan A, Xu R, Feng M, Liu L, Liu Q, Song F. Luminescent detection of pesticides by color changeable flexible coumarin-3-carboxylic acid/GdF3:Sm3+ composite film. Spectrochim Acta A Mol Biomol Spectrosc 2021;261:120002. [PMID: 34090095 DOI: 10.1016/j.saa.2021.120002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Wang J, Teng X, Wang Y, Si S, Ju J, Pan W, Wang J, Sun X, Wang W. Carbon dots based fluorescence methods for the detections of pesticides and veterinary drugs: Response mechanism, selectivity improvement and application. TrAC Trends in Analytical Chemistry 2021;144:116430. [DOI: 10.1016/j.trac.2021.116430] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
41 Giannetti A, Tombelli S. Aptamer optical switches: From biosensing to intracellular sensing. Sensors and Actuators Reports 2021;3:100030. [DOI: 10.1016/j.snr.2021.100030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Zhang Q, Fang L, Jia B, Long N, Shi L, Zhou L, Zhao H, Kong W. Optical lateral flow test strip biosensors for pesticides: Recent advances and future trends. TrAC Trends in Analytical Chemistry 2021;144:116427. [DOI: 10.1016/j.trac.2021.116427] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
43 Umapathi R, Sonwal S, Lee MJ, Mohana Rani G, Lee E, Jeon T, Kang S, Oh M, Huh YS. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coordination Chemistry Reviews 2021;446:214061. [DOI: 10.1016/j.ccr.2021.214061] [Cited by in Crossref: 13] [Cited by in F6Publishing: 45] [Article Influence: 13.0] [Reference Citation Analysis]
44 Trinh KH, Kadam US, Song J, Cho Y, Kang CH, Lee KO, Lim CO, Chung WS, Hong JC. Novel DNA Aptameric Sensors to Detect the Toxic Insecticide Fenitrothion. Int J Mol Sci 2021;22:10846. [PMID: 34639187 DOI: 10.3390/ijms221910846] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
45 Ly NH, Son SJ, Jang S, Lee C, Lee JI, Joo SW. Surface-Enhanced Raman Sensing of Semi-Volatile Organic Compounds by Plasmonic Nanostructures. Nanomaterials (Basel) 2021;11:2619. [PMID: 34685057 DOI: 10.3390/nano11102619] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
46 Fang L, Jia M, Zhao H, Kang L, Shi L, Zhou L, Kong W. Molecularly imprinted polymer-based optical sensors for pesticides in foods: Recent advances and future trends. Trends in Food Science & Technology 2021;116:387-404. [DOI: 10.1016/j.tifs.2021.07.039] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
47 Tang J, Liu L, Gao S, Qin J, Liu X, Tang D. A portable thermal detection method based on the target responsive hydrogel mediated self-heating of a warming pad. Chem Commun (Camb) 2021;57:9862-5. [PMID: 34490870 DOI: 10.1039/d1cc03733a] [Reference Citation Analysis]
48 Zhu L, Zhao J, Guo Z, Liu Y, Chen H, Chen Z, He N. Applications of Aptamer-Bound Nanomaterials in Cancer Therapy. Biosensors (Basel) 2021;11:344. [PMID: 34562934 DOI: 10.3390/bios11090344] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
49 Modi B, Timilsina H, Bhandari S, Achhami A, Pakka S, Shrestha P, Kandel D, Gc DB, Khatri S, Chhetri PM, Parajuli N. Current Trends of Food Analysis, Safety, and Packaging. Int J Food Sci 2021;2021:9924667. [PMID: 34485507 DOI: 10.1155/2021/9924667] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
50 Nxele SR, Nyokong T. The effects of the composition and structure of quantum dots combined with cobalt phthalocyanine and an aptamer on the electrochemical detection of prostate specific antigen. Dyes and Pigments 2021;192:109407. [DOI: 10.1016/j.dyepig.2021.109407] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
51 Soongsong J, Lerdsri J, Jakmunee J. A facile colorimetric aptasensor for low-cost chlorpyrifos detection utilizing gold nanoparticle aggregation induced by polyethyleneimine. Analyst 2021;146:4848-57. [PMID: 34231560 DOI: 10.1039/d1an00771h] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
52 Raicopol M, Pilan L. The Role of Aryldiazonium Chemistry in Designing Electrochemical Aptasensors for the Detection of Food Contaminants. Materials (Basel) 2021;14:3857. [PMID: 34300776 DOI: 10.3390/ma14143857] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
53 Su Z, Ye F, He K, Yang T, Li W, Ren J. Determination of Acetamiprid by Fluorescence Monitoring of a Glycine-L-Histidine Copper-Organic Framework Aptasensor. Analytical Letters. [DOI: 10.1080/00032719.2021.1946555] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
54 Khakhar A, Voytas DF. RNA Viral Vectors for Accelerating Plant Synthetic Biology. Front Plant Sci 2021;12:668580. [PMID: 34249040 DOI: 10.3389/fpls.2021.668580] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
55 Kanoun O, Lazarević-Pašti T, Pašti I, Nasraoui S, Talbi M, Brahem A, Adiraju A, Sheremet E, Rodriguez RD, Ben Ali M, Al-Hamry A. A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring. Sensors (Basel) 2021;21:4131. [PMID: 34208587 DOI: 10.3390/s21124131] [Cited by in Crossref: 1] [Cited by in F6Publishing: 18] [Article Influence: 1.0] [Reference Citation Analysis]
56 Liu Y, Yang G, Li T, Deng Y, Chen Z, He N. Selection of a DNA aptamer for the development of fluorescent aptasensor for carbaryl detection. Chinese Chemical Letters 2021;32:1957-62. [DOI: 10.1016/j.cclet.2021.01.016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 10.0] [Reference Citation Analysis]
57 Guo W, Zhang C, Ma T, Liu X, Chen Z, Li S, Deng Y. Advances in aptamer screening and aptasensors' detection of heavy metal ions. J Nanobiotechnology 2021;19:166. [PMID: 34074287 DOI: 10.1186/s12951-021-00914-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 26] [Article Influence: 2.0] [Reference Citation Analysis]
58 Liu M, Xi L, Tan T, Jin L, Wang Z, He N. A novel aptamer-based histochemistry assay for specific diagnosis of clinical breast cancer tissues. Chinese Chemical Letters 2021;32:1726-30. [DOI: 10.1016/j.cclet.2020.11.072] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
59 Ren M, Zhou J, Song Z, Mei H, Zhou M, Fu ZF, Han H, Zhao L. Aptamer and RVG functionalized gold nanorods for targeted photothermal therapy of neurotropic virus infection in the mouse brain. Chemical Engineering Journal 2021;411:128557. [DOI: 10.1016/j.cej.2021.128557] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
60 He L, Huang R, Xiao P, Liu Y, Jin L, Liu H, Li S, Deng Y, Chen Z, Li Z, He N. Current signal amplification strategies in aptamer-based electrochemical biosensor: A review. Chinese Chemical Letters 2021;32:1593-602. [DOI: 10.1016/j.cclet.2020.12.054] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 16.0] [Reference Citation Analysis]
61 Sun R, Yang W, Li Y, Sun C. Multi-residue analytical methods for pesticides in teas: a review. Eur Food Res Technol 2021;247:1839-58. [DOI: 10.1007/s00217-021-03765-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
62 Zara L, Achilli S, Chovelon B, Fiore E, Toulmé JJ, Peyrin E, Ravelet C. Anti-pesticide DNA aptamers fail to recognize their targets with asserted micromolar dissociation constants. Anal Chim Acta 2021;1159:338382. [PMID: 33867041 DOI: 10.1016/j.aca.2021.338382] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
63 Ding P, Wang Z, Wu Z, Zhu W, Liu L, Sun N, Pei R. Aptamer-based nanostructured interfaces for the detection and release of circulating tumor cells. J Mater Chem B 2020;8:3408-22. [PMID: 32022083 DOI: 10.1039/c9tb02457c] [Cited by in Crossref: 11] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
64 Zhang C, Zou X. The Downregulation of Long Noncoding RNA Metastasis Associated with Colon Cancer 1 (lncRNA MACC1-AS1) Inhibits the Migration and Invasion of Non-Small Cell Lung Cancer Cells. j biomater tissue eng 2021;11:453-7. [DOI: 10.1166/jbt.2021.2648] [Reference Citation Analysis]
65 Musarurwa H, Tawanda Tavengwa N. Extraction and electrochemical sensing of pesticides in food and environmental samples by use of polydopamine-based materials. Chemosphere 2021;266:129222. [DOI: 10.1016/j.chemosphere.2020.129222] [Cited by in Crossref: 2] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
66 Vázquez-González M, Willner I. Aptamer-Functionalized Hybrid Nanostructures for Sensing, Drug Delivery, Catalysis and Mechanical Applications. Int J Mol Sci 2021;22:1803. [PMID: 33670386 DOI: 10.3390/ijms22041803] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
67 Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today 2021;37:101092. [PMID: 33584847 DOI: 10.1016/j.nantod.2021.101092] [Cited by in Crossref: 16] [Cited by in F6Publishing: 70] [Article Influence: 16.0] [Reference Citation Analysis]
68 Talari FF, Bozorg A, Faridbod F, Vossoughi M. A novel sensitive aptamer-based nanosensor using rGQDs and MWCNTs for rapid detection of diazinon pesticide. Journal of Environmental Chemical Engineering 2021;9:104878. [DOI: 10.1016/j.jece.2020.104878] [Cited by in Crossref: 6] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
69 Alex A V, Deosarkar T, N C, Mukherjee A. An ultra-sensitive and selective AChE based colorimetric detection of malathion using silver nanoparticle-graphene oxide (Ag-GO) nanocomposite. Anal Chim Acta 2021;1142:73-83. [PMID: 33280706 DOI: 10.1016/j.aca.2020.10.057] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
70 Guo Z, Liu Y, He N, Deng Y, Jin L. Discussion of the protein characterization techniques used in the identification of membrane protein targets corresponding to tumor cell aptamers. Chinese Chemical Letters 2021;32:40-7. [DOI: 10.1016/j.cclet.2020.11.061] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
71 Tajik S, Beitollahi H, Garkani Nejad F, Sheikhshoaie I, Nugraha AS, Jang HW, Yamauchi Y, Shokouhimehr M. Performance of metal–organic frameworks in the electrochemical sensing of environmental pollutants. J Mater Chem A 2021;9:8195-220. [DOI: 10.1039/d0ta08344e] [Cited by in Crossref: 17] [Cited by in F6Publishing: 43] [Article Influence: 17.0] [Reference Citation Analysis]
72 Su D, Li H, Yan X, Lin Y, Lu G. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. TrAC Trends in Analytical Chemistry 2021;134:116126. [DOI: 10.1016/j.trac.2020.116126] [Cited by in Crossref: 12] [Cited by in F6Publishing: 44] [Article Influence: 12.0] [Reference Citation Analysis]
73 Zhang K, Li H, Wang W, Cao J, Gan N, Han H. Application of Multiplexed Aptasensors in Food Contaminants Detection. ACS Sens 2020;5:3721-38. [PMID: 33284002 DOI: 10.1021/acssensors.0c01740] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 16.0] [Reference Citation Analysis]
74 Wu H, Wu J, Wang H, Liu Y, Han G, Zou P. Sensitive and label-free chemiluminescence detection of malathion using exonuclease-assisted dual signal amplification and G-quadruplex/hemin DNAzyme. J Hazard Mater 2021;411:124784. [PMID: 33450635 DOI: 10.1016/j.jhazmat.2020.124784] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
75 Gaviria-arroyave MI, Cano JB, Peñuela GA. Nanomaterial-based fluorescent biosensors for monitoring environmental pollutants: A critical review. Talanta Open 2020;2:100006. [DOI: 10.1016/j.talo.2020.100006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
76 Huang S, Tan L, Zhang L, Wu J, Zhang L, Tang Y, Wang H, Liang Y. Molecularly imprinted mesoporous silica embedded with perovskite CsPbBr3 quantum dots for the fluorescence sensing of 2,2-dichlorovinyl dimethyl phosphate. Sensors and Actuators B: Chemical 2020;325:128751. [DOI: 10.1016/j.snb.2020.128751] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
77 Phopin K, Tantimongcolwat T. Pesticide Aptasensors-State of the Art and Perspectives. Sensors (Basel) 2020;20:E6809. [PMID: 33260648 DOI: 10.3390/s20236809] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
78 Liu X, Wu Z, Yang X, Wang Q, Zou L, Mei W, Zheng Y, Wang K. Photothermal and fluorescent dual-mode assay based on the formation of polydopamine nanoparticles for accurate determination of organophosphate pesticides. Mikrochim Acta 2020;187:652. [PMID: 33175189 DOI: 10.1007/s00604-020-04629-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
79 Dong H, Zhao Q, Li J, Xiang Y, Liu H, Guo Y, Yang Q, Sun X. Broad-spectrum electrochemical immunosensor based on one-step electrodeposition of AuNP-Abs and Prussian blue nanocomposite for organophosphorus pesticide detection. Bioprocess Biosyst Eng 2021;44:585-94. [PMID: 33161490 DOI: 10.1007/s00449-020-02472-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
80 Blair EO, Hannah S, Vezza V, Avcı H, Kocagoz T, Hoskisson PA, Güzel FD, Corrigan DK. Biologically modified microelectrode sensors provide enhanced sensitivity for detection of nucleic acid sequences from Mycobacterium tuberculosis. Sensors and Actuators Reports 2020;2:100008. [DOI: 10.1016/j.snr.2020.100008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
81 Soulis D, Trigazi M, Tsekenis G, Chandrinou C, Klinakis A, Zergioti I. Facile and Low-Cost SPE Modification Towards Ultra-Sensitive Organophosphorus and Carbamate Pesticide Detection in Olive Oil. Molecules 2020;25:E4988. [PMID: 33126549 DOI: 10.3390/molecules25214988] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
82 Chatterjee B, Kalyani N, Anand A, Khan E, Das S, Bansal V, Kumar A, Sharma TK. GOLD SELEX: a novel SELEX approach for the development of high-affinity aptamers against small molecules without residual activity. Mikrochim Acta 2020;187:618. [PMID: 33074441 DOI: 10.1007/s00604-020-04577-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
83 Liu R, He L, Hu Y, Luo Z, Zhang J. A serological aptamer-assisted proximity ligation assay for COVID-19 diagnosis and seeking neutralizing aptamers. Chem Sci 2020;11:12157-64. [PMID: 34123223 DOI: 10.1039/d0sc03920a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 38] [Article Influence: 8.5] [Reference Citation Analysis]
84 Che Lah NF, Ahmad AL, Low SC. Molecular imprinted membrane biosensor for pesticide detection: Perspectives and challenges. Polym Adv Technol 2021;32:17-30. [DOI: 10.1002/pat.5098] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
85 Zhang N, Liu B, Cui X, Li Y, Tang J, Wang H, Zhang D, Li Z. Recent advances in aptasensors for mycotoxin detection: On the surface and in the colloid. Talanta 2021;223:121729. [PMID: 33303172 DOI: 10.1016/j.talanta.2020.121729] [Cited by in Crossref: 8] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
86 Huang S, Tang R, Zhang T, Zhao J, Jiang Z, Wang Q. Anti-fouling poly adenine coating combined with highly specific CD20 epitope mimetic peptide for rituximab detection in clinical patients' plasma. Biosens Bioelectron 2021;171:112678. [PMID: 33113382 DOI: 10.1016/j.bios.2020.112678] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
87 Koçer MB, Aydoğdu Tığ G, Pekyardımcı Ş. Selective determination of non-organophosphorus insecticide using DNA aptamer-based single-use biosensors. Biotechnol Appl Biochem 2021;68:1174-84. [PMID: 32969502 DOI: 10.1002/bab.2039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
88 Liu M, Zhang B, Li Z, Wang Z, Li S, Liu H, Deng Y, He N. Precise discrimination of Luminal A breast cancer subtype using an aptamer in vitro and in vivo. Nanoscale 2020;12:19689-701. [PMID: 32966497 DOI: 10.1039/d0nr03324c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
89 Bor G, Man E, Ugurlu O, Ceylan AE, Balaban S, Durmus C, Pinar Gumus Z, Evran S, Timur S. in vitro Selection of Aptamer for Imidacloprid Recognition as Model Analyte and Construction of a Water Analysis Platform. Electroanalysis 2020;32:1922-9. [DOI: 10.1002/elan.202000075] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
90 Jia M, E Z, Zhai F, Bing X. Rapid Multi-Residue Detection Methods for Pesticides and Veterinary Drugs. Molecules 2020;25:E3590. [PMID: 32784605 DOI: 10.3390/molecules25163590] [Cited by in Crossref: 7] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
91 Lim ES, Lim MC, Park K, Lee G, Lim JA, Woo MA, Lee N, Choi SW, Chang HJ. Selective Binding and Elution of Aptamers for Pesticides Based on Sol-Gel-Coated Nanoporous Anodized Aluminum Oxide Membrane. Nanomaterials (Basel) 2020;10:E1533. [PMID: 32764256 DOI: 10.3390/nano10081533] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
92 Mahmoudpour M, Torbati M, Mousavi M, de la Guardia M, Ezzati Nazhad Dolatabadi J. Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects. TrAC Trends in Analytical Chemistry 2020;129:115943. [DOI: 10.1016/j.trac.2020.115943] [Cited by in Crossref: 22] [Cited by in F6Publishing: 40] [Article Influence: 11.0] [Reference Citation Analysis]
93 He Z, Chen Z, Tan M, Elingarami S, Liu Y, Li T, Deng Y, He N, Li S, Fu J, Li W. A review on methods for diagnosis of breast cancer cells and tissues. Cell Prolif 2020;53:e12822. [PMID: 32530560 DOI: 10.1111/cpr.12822] [Cited by in Crossref: 12] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
94 Naseri M, Mohammadniaei M, Sun Y, Ashley J. The Use of Aptamers and Molecularly Imprinted Polymers in Biosensors for Environmental Monitoring: A Tale of Two Receptors. Chemosensors 2020;8:32. [DOI: 10.3390/chemosensors8020032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
95 Soukarié D, Ecochard V, Salomé L. DNA-based nanobiosensors for monitoring of water quality. International Journal of Hygiene and Environmental Health 2020;226:113485. [DOI: 10.1016/j.ijheh.2020.113485] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
96 Pérez-Fernández B, Costa-García A, Muñiz AE. Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes. Biosensors (Basel) 2020;10:E32. [PMID: 32252430 DOI: 10.3390/bios10040032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 31] [Article Influence: 7.5] [Reference Citation Analysis]
97 Wang Q, Yang Q, Wu W. Progress on Structured Biosensors for Monitoring Aflatoxin B1 From Biofilms: A Review. Front Microbiol 2020;11:408. [PMID: 32292390 DOI: 10.3389/fmicb.2020.00408] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
98 Wei Z, Chen D, Guo Z, Jia P, Xing H. Eosin Y-Embedded Zirconium-Based Metal–Organic Framework as a Dual-Emitting Built-In Self-Calibrating Platform for Pesticide Detection. Inorg Chem 2020;59:5386-93. [DOI: 10.1021/acs.inorgchem.9b03635] [Cited by in Crossref: 16] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
99 Shahdost-Fard F, Roushani M. Architecting of a biodevice based on a screen-printed carbon electrode modified with the NiONP nanolayer and aptamer in BCM-7 detection. Colloids Surf B Biointerfaces 2020;190:110932. [PMID: 32163843 DOI: 10.1016/j.colsurfb.2020.110932] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
100 Liu Q, Zhang W, Chen S, Zhuang Z, Zhang Y, Jiang L, Lin JS. SELEX tool: a novel and convenient gel-based diffusion method for monitoring of aptamer-target binding. J Biol Eng 2020;14:1. [PMID: 31956340 DOI: 10.1186/s13036-019-0223-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
101 Ren Q, Ga L, Lu Z, Ai J, Wang T. Aptamer-functionalized nanomaterials for biological applications. Mater Chem Front 2020;4:1569-85. [DOI: 10.1039/c9qm00779b] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
102 Ba Hashwan SS, Khir MHBM, Al-douri Y, Ahmed AY. Recent Progress in the Development of Biosensors for Chemicals and Pesticides Detection. IEEE Access 2020;8:82514-27. [DOI: 10.1109/access.2020.2991380] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
103 Fu J, Dong H, Zhao Q, Cheng S, Guo Y, Sun X. Fabrication of refreshable aptasensor based on hydrophobic screen-printed carbon electrode interface. Sci Total Environ 2020;712:136410. [PMID: 32050375 DOI: 10.1016/j.scitotenv.2019.136410] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
104 Kong D, Jin R, Wang T, Li H, Yan X, Su D, Wang C, Liu F, Sun P, Liu X, Gao Y, Ma J, Liang X, Lu G. Fluorescent hydrogel test kit coordination with smartphone: Robust performance for on-site dimethoate analysis. Biosensors and Bioelectronics 2019;145:111706. [DOI: 10.1016/j.bios.2019.111706] [Cited by in Crossref: 13] [Cited by in F6Publishing: 22] [Article Influence: 4.3] [Reference Citation Analysis]
105 Mao X, Li Q, Zuo X, Fan C. Catalytic Nucleic Acids for Bioanalysis. ACS Appl Bio Mater 2020;3:2674-85. [DOI: 10.1021/acsabm.9b00928] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
106 Yuan YY, Wang ST, Liu SY, Cheng Q, Wang ZF, Kong DM. Green approach for simultaneous determination of multi-pesticide residue in environmental water samples using excitation-emission matrix fluorescence and multivariate calibration. Spectrochim Acta A Mol Biomol Spectrosc 2020;228:117801. [PMID: 31776096 DOI: 10.1016/j.saa.2019.117801] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
107 Zhao L, Wang Y, Zhao G, Zhang N, Zhang Y, Luo X, Du B, Wei Q. Electrochemical aptasensor based on Au@HS-rGO and thymine-Hg2+-thymine structure for sensitive detection of mercury ion. Journal of Electroanalytical Chemistry 2019;848:113308. [DOI: 10.1016/j.jelechem.2019.113308] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
108 Kim SH, Thoa TTT, Gu MB. Aptasensors for environmental monitoring of contaminants in water and soil. Current Opinion in Environmental Science & Health 2019;10:9-21. [DOI: 10.1016/j.coesh.2019.09.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
109 Sulaiman NS, Rovina K, Joseph VM. Classification, extraction and current analytical approaches for detection of pesticides in various food products. J Consum Prot Food Saf 2019;14:209-21. [DOI: 10.1007/s00003-019-01242-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
110 Blair EO, Corrigan DK. A review of microfabricated electrochemical biosensors for DNA detection. Biosensors and Bioelectronics 2019;134:57-67. [DOI: 10.1016/j.bios.2019.03.055] [Cited by in Crossref: 60] [Cited by in F6Publishing: 65] [Article Influence: 20.0] [Reference Citation Analysis]
111 Pinyou P, Blay V, Muresan LM, Noguer T. Enzyme-modified electrodes for biosensors and biofuel cells. Mater Horiz 2019;6:1336-58. [DOI: 10.1039/c9mh00013e] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 14.7] [Reference Citation Analysis]
112 Huang R, Xiong LL, Chai HH, Fu JJ, Lu Z, Yu L. Sensitive colorimetric detection of ochratoxin A by a dual-functional Au/Fe 3 O 4 nanohybrid-based aptasensor. RSC Adv 2019;9:38590-6. [DOI: 10.1039/c9ra07899a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]