BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kalinowska D, Grabowska-Jadach I, Liwinska M, Drozd M, Pietrzak M, Dybko A, Brzozka Z. Studies on effectiveness of PTT on 3D tumor model under microfluidic conditions using aptamer-modified nanoshells. Biosens Bioelectron 2019;126:214-21. [PMID: 30423478 DOI: 10.1016/j.bios.2018.10.069] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Jin B, Guo Z, Chen Z, Chen H, Li S, Deng Y, Jin L, Liu Y, Zhang Y, He N. Aptamers in cancer therapy: problems and new breakthroughs. J Mater Chem B 2023;11:1609-27. [PMID: 36744587 DOI: 10.1039/d2tb02579e] [Reference Citation Analysis]
2 Zheng X, Wu Y, Zuo H, Chen W, Wang K. Metal Nanoparticles as Novel Agents for Lung Cancer Diagnosis and Therapy. Small 2023;:e2206624. [PMID: 36732908 DOI: 10.1002/smll.202206624] [Reference Citation Analysis]
3 Piasek AM, Musolf P, Sobiepanek A. Aptamer-based Advances in Skin Cancer Research. Curr Med Chem 2023;30:953-73. [PMID: 35400317 DOI: 10.2174/0929867329666220408112735] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Zhang Y, Wang X, Yang Y, Yan J, Xiong Y, Wang W, Lei J, Jiang T. Recapitulating essential pathophysiological characteristics in lung-on-a-chip for disease studies. Front Immunol 2023;14:1093460. [PMID: 36926347 DOI: 10.3389/fimmu.2023.1093460] [Reference Citation Analysis]
5 Johnson A, Reimer S, Childres R, Cupp G, Kohs TCL, McCarty OJT, Kang YA. The Applications and Challenges of the Development of In Vitro Tumor Microenvironment Chips. Cell Mol Bioeng 2023;16:3-21. [PMID: 36660587 DOI: 10.1007/s12195-022-00755-7] [Reference Citation Analysis]
6 Carvalho V, Bañobre-lópez M, Minas G, Teixeira SF, Lima R, Rodrigues RO. The integration of spheroids and organoids into organ-on-a-chip platforms for tumour research: A review. Bioprinting 2022;27:e00224. [DOI: 10.1016/j.bprint.2022.e00224] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Alle M, Sharma G, Lee SH, Kim JC. Next-generation engineered nanogold for multimodal cancer therapy and imaging: a clinical perspectives. J Nanobiotechnology 2022;20:222. [PMID: 35778747 DOI: 10.1186/s12951-022-01402-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wang M, Zhang L, Hao H, Hu X, Xin Z, Zhu Y, Shen Y, Wang J. Synergistic H2O2 self-supplying and NIR-responsive drug delivery nanoplatform for chemodynamic-photothermal-chemotherapy. Colloids Surf B Biointerfaces 2022;213:112412. [PMID: 35184000 DOI: 10.1016/j.colsurfb.2022.112412] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Dong Q, Jia X, Wang Y, Wang H, Liu Q, Li D, Wang J, Wang E. Sensitive and selective detection of Mucin1 in pancreatic cancer using hybridization chain reaction with the assistance of Fe3O4@polydopamine nanocomposites. J Nanobiotechnology 2022;20:94. [PMID: 35197099 DOI: 10.1186/s12951-022-01289-w] [Reference Citation Analysis]
10 Grabowska-jadach I, Ziółkowski R, Marchlewicz K, Brzózka Z. Lab-on-a-Chip Systems for Biomedical Analysis. Handbook of Bioanalytics 2022. [DOI: 10.1007/978-3-030-63957-0_31-2] [Reference Citation Analysis]
11 Grabowska-jadach I, Ziółkowski R, Marchlewicz K, Brzózka Z. Lab-on-a-Chip Systems for Biomedical Analysis. Handbook of Bioanalytics 2022. [DOI: 10.1007/978-3-030-95660-8_31] [Reference Citation Analysis]
12 Grabowska-jadach I, Ziołkowski R, Marchlewicz K, Brzozka Z. Lab-on-a-Chip Systems for Biomedical Analysis. Handbook of Bioanalytics 2022. [DOI: 10.1007/978-3-030-63957-0_31-1] [Reference Citation Analysis]
13 Del Piccolo N, Shirure VS, Bi Y, Goedegebuure SP, Gholami S, Hughes CCW, Fields RC, George SC. Tumor-on-chip modeling of organ-specific cancer and metastasis. Adv Drug Deliv Rev 2021;175:113798. [PMID: 34015419 DOI: 10.1016/j.addr.2021.05.008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
14 Liu W, Hu R, Han K, Sun M, Liu D, Zhang J, Wang J. Parallel and large-scale antitumor investigation using stable chemical gradient and heterotypic three-dimensional tumor coculture in a multi-layered microfluidic device. Biotechnol J 2021;:e2000655. [PMID: 34218506 DOI: 10.1002/biot.202000655] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
15 Gupta R, Sharma D. Therapeutic response differences between 2D and 3D tumor models of magnetic hyperthermia. Nanoscale Adv 2021;3:3663-80. [PMID: 36133021 DOI: 10.1039/d1na00224d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
16 Fu Z, Xiang J. Aptamer-Functionalized Nanoparticles in Targeted Delivery and Cancer Therapy. Int J Mol Sci 2020;21:E9123. [PMID: 33266216 DOI: 10.3390/ijms21239123] [Cited by in Crossref: 35] [Cited by in F6Publishing: 41] [Article Influence: 11.7] [Reference Citation Analysis]
17 Kung C, Gao H, Lee C, Wang Y, Dong W, Ko C, Wang G, Fu L. Microfluidic synthesis control technology and its application in drug delivery, bioimaging, biosensing, environmental analysis and cell analysis. Chemical Engineering Journal 2020;399:125748. [DOI: 10.1016/j.cej.2020.125748] [Cited by in Crossref: 43] [Cited by in F6Publishing: 30] [Article Influence: 14.3] [Reference Citation Analysis]
18 Mun SG, Choi HW, Lee JM, Lim JH, Ha JH, Kang MJ, Kim EJ, Kang L, Chung BG. rGO nanomaterial-mediated cancer targeting and photothermal therapy in a microfluidic co-culture platform. Nano Converg 2020;7:10. [PMID: 32180051 DOI: 10.1186/s40580-020-0220-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
19 Mamani JB, Marinho BS, Rego GNA, Nucci MP, Alvieri F, Santos RSD, Ferreira JVM, Oliveira FA, Gamarra LF. Magnetic hyperthermia therapy in glioblastoma tumor on-a-Chip model. Einstein (Sao Paulo) 2020;18:eAO4954. [PMID: 31939525 DOI: 10.31744/einstein_journal/2020AO4954] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
20 Maia FR, Reis RL, Oliveira JM. Nanoparticles and Microfluidic Devices in Cancer Research. Adv Exp Med Biol 2020;1230:161-71. [PMID: 32285370 DOI: 10.1007/978-3-030-36588-2_10] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
21 Maia FR, Reis RL, Oliveira JM. Finding the perfect match between nanoparticles and microfluidics to respond to cancer challenges. Nanomedicine 2020;24:102139. [PMID: 31843662 DOI: 10.1016/j.nano.2019.102139] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
22 Liu H, Zhang L, Xu Y, Chen J, Wang Y, Huang Q, Chen X, Liu Y, Dai Z, Zou X, Li Z. Sandwich immunoassay coupled with isothermal exponential amplification reaction: An ultrasensitive approach for determination of tumor marker MUC1. Talanta 2019;204:248-54. [DOI: 10.1016/j.talanta.2019.06.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
23 Grabowska-jadach I, Drozd M, Kalinowska D, Pietrzak M, Iwon Z, Malinowska E, Brzózka Z, Dybko A. Hollow gold nanoshells modified with PEG: synthesis and application as photothermal agents. Novel Biophotonics Techniques and Applications V 2019. [DOI: 10.1117/12.2526928] [Reference Citation Analysis]
24 Malik P, Ameta RK. Recent Advances in the au NP Treatment Strategies of Lung Cancers. Biomedical Engineering and its Applications in Healthcare 2019. [DOI: 10.1007/978-981-13-3705-5_29] [Reference Citation Analysis]