BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sun D, Lu J, Luo Z, Zhang L, Liu P, Chen Z. Competitive electrochemical platform for ultrasensitive cytosensing of liver cancer cells by using nanotetrahedra structure with rolling circle amplification. Biosens Bioelectron 2018;120:8-14. [PMID: 30142479 DOI: 10.1016/j.bios.2018.08.002] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Xu J, Jiang R, He H, Ma C, Tang Z. Recent advances on G-quadruplex for biosensing, bioimaging and cancer therapy. TrAC Trends in Analytical Chemistry 2021;139:116257. [DOI: 10.1016/j.trac.2021.116257] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
2 Zhao G, Liu Y, Du J, Zhang H, Feng H, Lu X. Application of tetrahedral -deoxyribonucleic acid electrochemistry platform coupling aptazymes and hybridized hairpin reactions for the measurement of extracellular adenosine triphosphate in plants. Anal Chim Acta 2021;1172:338681. [PMID: 34119022 DOI: 10.1016/j.aca.2021.338681] [Reference Citation Analysis]
3 Sun D, Lu J, Zhang L, Chen Z. Aptamer-based electrochemical cytosensors for tumor cell detection in cancer diagnosis: A review. Anal Chim Acta 2019;1082:1-17. [PMID: 31472698 DOI: 10.1016/j.aca.2019.07.054] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 12.7] [Reference Citation Analysis]
4 He L, Huang R, Xiao P, Liu Y, Jin L, Liu H, Li S, Deng Y, Chen Z, Li Z, He N. Current signal amplification strategies in aptamer-based electrochemical biosensor: A review. Chinese Chemical Letters 2021;32:1593-602. [DOI: 10.1016/j.cclet.2020.12.054] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 16.0] [Reference Citation Analysis]
5 Wu L, Wang Y, Zhu L, Liu Y, Wang T, Liu D, Song Y, Yang C. Aptamer-Based Liquid Biopsy. ACS Appl Bio Mater 2020;3:2743-64. [DOI: 10.1021/acsabm.9b01194] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
6 Lorenzo-gómez R, Miranda-castro R, de-los-Santos-Álvarez N, Lobo-castañón MJ. Electrochemical aptamer-based assays coupled to isothermal nucleic acid amplification techniques: New tools for cancer diagnosis. Current Opinion in Electrochemistry 2019;14:32-43. [DOI: 10.1016/j.coelec.2018.11.008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 4.7] [Reference Citation Analysis]
7 Xu J, Hu Y, Wang S, Ma X, Guo J. Nanomaterials in electrochemical cytosensors. Analyst 2020;145:2058-69. [DOI: 10.1039/c9an01895f] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
8 El-Safty SA, Shenashen MA. Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Mater Today Bio 2020;5:100044. [PMID: 32181446 DOI: 10.1016/j.mtbio.2020.100044] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
9 Yaman YT, Akbal O, Abaci S. Development of clay-protein based composite nanoparticles modified single-used sensor platform for electrochemical cytosensing application. Biosensors and Bioelectronics 2019;132:230-7. [DOI: 10.1016/j.bios.2019.02.058] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
10 Liu Y, Bian H, Wu Y, Yin Y, Wu J, Peng Z, Du J. Ultrasensitive electrochemiluminescence biosensors based on programmable aptazyme-induced hybridization chain reaction for detecting adenosine triphosphate and quinine. Sensors and Actuators B: Chemical 2022;369:132266. [DOI: 10.1016/j.snb.2022.132266] [Reference Citation Analysis]
11 Dai Y, Han B, Dong L, Zhao J, Cao Y. Recent advances in nanomaterial-enhanced biosensing methods for hepatocellular carcinoma diagnosis. TrAC Trends in Analytical Chemistry 2020;130:115965. [DOI: 10.1016/j.trac.2020.115965] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
12 Liu Y, Chen D, Zhang W, Zhang Y. Mobile DNA tetrahedron on ultra-low adsorption lipid membrane for directional control of cell sensing. Sensors and Actuators B: Chemical 2020;307:127570. [DOI: 10.1016/j.snb.2019.127570] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
13 Xu H, Zheng J, Liang H, Li C. Electrochemical sensor for cancer cell detection using calix[8]arene/polydopamine/phosphorene nanocomposite based on host−guest recognition. Sensors and Actuators B: Chemical 2020;317:128193. [DOI: 10.1016/j.snb.2020.128193] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]
14 Wang Q, Liu Y, Yan J, Liu Y, Gao C, Ge S, Yu J. 3D DNA Walker-Assisted CRISPR/Cas12a Trans-Cleavage for Ultrasensitive Electrochemiluminescence Detection of miRNA-141. Anal Chem 2021;93:13373-81. [PMID: 34553925 DOI: 10.1021/acs.analchem.1c03183] [Reference Citation Analysis]
15 Tang Z, Huang J, He H, Ma C, Wang K. Contributing to liquid biopsy: Optical and electrochemical methods in cancer biomarker analysis. Coordination Chemistry Reviews 2020;415:213317. [DOI: 10.1016/j.ccr.2020.213317] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
16 Díaz-Fernández A, Lorenzo-Gómez R, Miranda-Castro R, de-Los-Santos-Álvarez N, Lobo-Castañón MJ. Electrochemical aptasensors for cancer diagnosis in biological fluids - A review. Anal Chim Acta 2020;1124:1-19. [PMID: 32534661 DOI: 10.1016/j.aca.2020.04.022] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
17 Sun D, Lin X, Lu J, Wei P, Luo Z, Lu X, Chen Z, Zhang L. DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme. Biosens Bioelectron 2019;142:111578. [PMID: 31422223 DOI: 10.1016/j.bios.2019.111578] [Cited by in Crossref: 33] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
18 Zhang Z, Li Q, Du X, Liu M. Application of electrochemical biosensors in tumor cell detection. Thorac Cancer 2020;11:840-50. [PMID: 32101379 DOI: 10.1111/1759-7714.13353] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
19 Chen H, Xiang Y, Cai R, Zhang L, Zhang Y, Zhou N. An ultrasensitive biosensor for dual-specific DNA based on deposition of polyaniline on a self-assembled multi-functional DNA hexahedral-nanostructure. Biosens Bioelectron 2021;179:113066. [PMID: 33571935 DOI: 10.1016/j.bios.2021.113066] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Zhou H, Du X, Zhang Z. Electrochemical Sensors for Detection of Markers on Tumor Cells. Int J Mol Sci 2021;22:8184. [PMID: 34360949 DOI: 10.3390/ijms22158184] [Reference Citation Analysis]
21 Zhang B, Tian P, Zhu H, Xie L, Dai P, He B. Ultrasensitive detection of PCB77 based on Exonuclease III-powered DNA walking machine. J Hazard Mater 2021;416:125831. [PMID: 33878649 DOI: 10.1016/j.jhazmat.2021.125831] [Reference Citation Analysis]
22 Xu T, Zhou J, Li X, Ke W, Liu J, Gao H, Dai H. Electrochemical sensing technology for liquid biopsy of circulating tumor cells-a review. Bioelectrochemistry 2021;140:107823. [PMID: 33915341 DOI: 10.1016/j.bioelechem.2021.107823] [Reference Citation Analysis]
23 Abd-Ellatief R, Abd-Ellatief MR. Electrochemical Aptasensors: Current Status and Future Perspectives. Diagnostics (Basel) 2021;11:104. [PMID: 33440751 DOI: 10.3390/diagnostics11010104] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Gunasekhar P, Vijayalakshmi S. Analysis on segmentation and biomarker‐based approaches for liver cancer detection: A survey. IET image process 2021;15:845-55. [DOI: 10.1049/ipr2.12073] [Reference Citation Analysis]
25 Asadi R, Mollasalehi H. The mechanism and improvements to the isothermal amplification of nucleic acids, at a glance. Anal Biochem 2021;:114260. [PMID: 34023274 DOI: 10.1016/j.ab.2021.114260] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
26 Zhou X, Schuh DA, Castle LM, Furst AL. Recent Advances in Signal Amplification to Improve Electrochemical Biosensing for Infectious Diseases. Front Chem 2022;10:911678. [DOI: 10.3389/fchem.2022.911678] [Reference Citation Analysis]
27 Yang P, Guo X, Zhang J, Chen C, Gan Y, Xie W, Du Y, Wu Z. Picomolar thrombin detection by orchestration of triple signal amplification strategy with hierarchically porous Ti3C2Tx MXene electrode material-catalytic hairpin assembly reaction-metallic nanoprobes. Biosensors and Bioelectronics 2022;208:114228. [DOI: 10.1016/j.bios.2022.114228] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Huang Y, Tao M, Luo S, Zhang Y, Situ B, Ye X, Chen P, Jiang X, Wang Q, Zheng L. A novel nest hybridization chain reaction based electrochemical assay for sensitive detection of circulating tumor DNA. Anal Chim Acta 2020;1107:40-7. [PMID: 32200900 DOI: 10.1016/j.aca.2020.02.006] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
29 Yu N, Wu J. Rapid and reagentless detection of thrombin in clinic samples via microfluidic aptasensors with multiple target-binding sites. Biosens Bioelectron 2019;146:111726. [PMID: 31586758 DOI: 10.1016/j.bios.2019.111726] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
30 Zhang K, Zhang H, Cao H, Jiang Y, Mao K, Yang Z. Rolling Circle Amplification as an Efficient Analytical Tool for Rapid Detection of Contaminants in Aqueous Environments. Biosensors (Basel) 2021;11:352. [PMID: 34677308 DOI: 10.3390/bios11100352] [Reference Citation Analysis]
31 Liang Z, Ou D, Sun D, Tong Y, Luo H, Chen Z. Ultrasensitive biosensor for microRNA-155 using synergistically catalytic nanoprobe coupled with improved cascade strand displacement reaction. Biosens Bioelectron 2019;146:111744. [PMID: 31605986 DOI: 10.1016/j.bios.2019.111744] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
32 Atapour A, Khajehzadeh H, Shafie M, Abbasi M, Mosleh-shirazi S, Kasaee SR, Amani AM. Gold nanoparticle-based aptasensors: A promising perspective for early-stage detection of cancer biomarkers. Materials Today Communications 2022;30:103181. [DOI: 10.1016/j.mtcomm.2022.103181] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
33 Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C, Tan W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem Rev 2021. [PMID: 33667075 DOI: 10.1021/acs.chemrev.0c01140] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
34 Cao Y, Dai Y, Chen H, Tang Y, Chen X, Wang Y, Zhao J, Zhu X. Integration of fluorescence imaging and electrochemical biosensing for both qualitative location and quantitative detection of cancer cells. Biosens Bioelectron 2019;130:132-8. [PMID: 30735946 DOI: 10.1016/j.bios.2019.01.024] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 10.7] [Reference Citation Analysis]
35 Ou D, Sun D, Lin X, Liang Z, Zhong Y, Chen Z. A dual-aptamer-based biosensor for specific detection of breast cancer biomarker HER2 via flower-like nanozymes and DNA nanostructures. J Mater Chem B 2019;7:3661-9. [DOI: 10.1039/c9tb00472f] [Cited by in Crossref: 32] [Cited by in F6Publishing: 2] [Article Influence: 10.7] [Reference Citation Analysis]
36 Bakhtiari H, Palizban AA, Khanahmad H, Mofid MR. Aptamer-based approaches for in vitro molecular detection of cancer. Res Pharm Sci 2020;15:107-22. [PMID: 32582351 DOI: 10.4103/1735-5362.283811] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
37 Wang SS, Zhao XP, Liu FF, Younis MR, Xia XH, Wang C. Direct Plasmon-Enhanced Electrochemistry for Enabling Ultrasensitive and Label-Free Detection of Circulating Tumor Cells in Blood. Anal Chem 2019;91:4413-20. [PMID: 30816698 DOI: 10.1021/acs.analchem.8b04908] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 15.7] [Reference Citation Analysis]
38 Tian J, Liang Z, Hu O, He Q, Sun D, Chen Z. An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochimica Acta 2021;387:138553. [DOI: 10.1016/j.electacta.2021.138553] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 16.0] [Reference Citation Analysis]
39 Feng C, Guo J, Li G, Ye B, Zou L. Novel multiple strand displacement reaction coupled hybridization chain reaction for label-free and ultrasensitive electrochemical Type b3a2 biosensing. Sensors and Actuators B: Chemical 2021;326:128972. [DOI: 10.1016/j.snb.2020.128972] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
40 Bolat G, Vural OA, Yaman YT, Abaci S. Polydopamine nanoparticles-assisted impedimetric sensor towards label-free lung cancer cell detection. Mater Sci Eng C Mater Biol Appl 2021;119:111549. [PMID: 33321613 DOI: 10.1016/j.msec.2020.111549] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Sun D, Luo Z, Lu J, Zhang S, Che T, Chen Z, Zhang L. Electrochemical dual-aptamer-based biosensor for nonenzymatic detection of cardiac troponin I by nanohybrid electrocatalysts labeling combined with DNA nanotetrahedron structure. Biosens Bioelectron 2019;134:49-56. [PMID: 30954926 DOI: 10.1016/j.bios.2019.03.049] [Cited by in Crossref: 44] [Cited by in F6Publishing: 32] [Article Influence: 14.7] [Reference Citation Analysis]
42 Lu C, Han J, Sun X, Yang G. Electrochemical Detection and Point-of-Care Testing for Circulating Tumor Cells: Current Techniques and Future Potentials. Sensors (Basel) 2020;20:E6073. [PMID: 33114569 DOI: 10.3390/s20216073] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Sadighbayan D, Sadighbayan K, Khosroushahi AY, Hasanzadeh M. Recent advances on the DNA-based electrochemical biosensing of cancer biomarkers: Analytical approach. TrAC Trends in Analytical Chemistry 2019;119:115609. [DOI: 10.1016/j.trac.2019.07.020] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
44 Luo Z, Sun D, Tong Y, Zhong Y, Chen Z. DNA nanotetrahedron linked dual-aptamer based voltammetric aptasensor for cardiac troponin I using a magnetic metal-organic framework as a label. Mikrochim Acta 2019;186:374. [PMID: 31123904 DOI: 10.1007/s00604-019-3470-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
45 Zhao H, Wang M, Xiong X, Liu Y, Chen X. Simultaneous fluorescent detection of multiplexed miRNA of liver cancer based on DNA tetrahedron nanotags. Talanta 2020;210:120677. [DOI: 10.1016/j.talanta.2019.120677] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]