BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hiraka K, Kojima K, Lin C, Tsugawa W, Asano R, La Belle JT, Sode K. Minimizing the effects of oxygen interference on l -lactate sensors by a single amino acid mutation in Aerococcus viridans l -lactate oxidase. Biosensors and Bioelectronics 2018;103:163-70. [DOI: 10.1016/j.bios.2017.12.018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Li G, Lian J, Xue H, Jiang Y, Ju S, Wu M, Lin J, Yang L. Biocascade Synthesis of L-Tyrosine Derivatives by Coupling a Thermophilic Tyrosine Phenol-Lyase and L-Lactate Oxidase: Biocascade Synthesis of L-Tyrosine Derivatives by Coupling a Thermophilic Tyrosine Phenol-Lyase and L-Lactate Oxidase. Eur J Org Chem 2020;2020:1050-4. [DOI: 10.1002/ejoc.202000061] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
2 Hiraka K, Tsugawa W, Sode K. Alteration of Electron Acceptor Preferences in the Oxidative Half-Reaction of Flavin-Dependent Oxidases and Dehydrogenases. Int J Mol Sci 2020;21:E3797. [PMID: 32471202 DOI: 10.3390/ijms21113797] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
3 Fitriana M, Loew N, Witarto AB, Ikebukuro K, Sode K, Tsugawa W. Employment of 1-Methoxy-5-Ethyl Phenazinium Ethyl Sulfate as a Stable Electron Mediator in Flavin Oxidoreductases-Based Sensors. Sensors (Basel) 2020;20:E2825. [PMID: 32429321 DOI: 10.3390/s20102825] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
4 Zhu Z, Song H, Wang Y, Zhang YP. Protein engineering for electrochemical biosensors. Curr Opin Biotechnol 2022;76:102751. [PMID: 35777077 DOI: 10.1016/j.copbio.2022.102751] [Reference Citation Analysis]
5 Xiao X, Xia HQ, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A. Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chem Rev 2019;119:9509-58. [PMID: 31243999 DOI: 10.1021/acs.chemrev.9b00115] [Cited by in Crossref: 140] [Cited by in F6Publishing: 64] [Article Influence: 46.7] [Reference Citation Analysis]
6 Xiao X, Conghaile PÓ, Leech D, Magner E. Use of Polymer Coatings to Enhance the Response of Redox‐Polymer‐Mediated Electrodes. ChemElectroChem 2019;6:1344-9. [DOI: 10.1002/celc.201800983] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
7 Furubayashi N, Inaka K, Kamo M, Umena Y, Matsuoka T, Morimoto Y. Dynamic interactions in the l-lactate oxidase active site facilitate substrate binding at pH4.5. Biochem Biophys Res Commun 2021;568:131-5. [PMID: 34214876 DOI: 10.1016/j.bbrc.2021.06.078] [Reference Citation Analysis]
8 Hiraka K, Kojima K, Tsugawa W, Asano R, Ikebukuro K, Sode K. Rational engineering of Aerococcus viridansl-lactate oxidase for the mediator modification to achieve quasi-direct electron transfer type lactate sensor. Biosens Bioelectron 2020;151:111974. [PMID: 31999581 DOI: 10.1016/j.bios.2019.111974] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Hiraka K, Tsugawa W, Asano R, Yokus MA, Ikebukuro K, Daniele MA, Sode K. Rational design of direct electron transfer type l-lactate dehydrogenase for the development of multiplexed biosensor. Biosens Bioelectron 2021;176:112933. [PMID: 33395570 DOI: 10.1016/j.bios.2020.112933] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 9.0] [Reference Citation Analysis]
10 Miura D, Kimura H, Tsugawa W, Ikebukuro K, Sode K, Asano R. Rapid, convenient, and highly sensitive detection of human hemoglobin in serum using a high-affinity bivalent antibody-enzyme complex. Talanta 2021;234:122638. [PMID: 34364447 DOI: 10.1016/j.talanta.2021.122638] [Reference Citation Analysis]
11 Li G, Lian J, Xue H, Jiang Y, Wu M, Lin J, Yang L. Enzymatic preparation of pyruvate by a whole-cell biocatalyst coexpressing l-lactate oxidase and catalase. Process Biochemistry 2020;96:113-21. [DOI: 10.1016/j.procbio.2020.04.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
12 Hatada M, Loew N, Inose-takahashi Y, Okuda-shimazaki J, Tsugawa W, Mulchandani A, Sode K. Development of a glucose sensor employing quick and easy modification method with mediator for altering electron acceptor preference. Bioelectrochemistry 2018;121:185-90. [DOI: 10.1016/j.bioelechem.2018.02.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
13 Manivel P, Suryanarayanan V, Nesakumar N, Velayutham D, Madasamy K, Kathiresan M, Kulandaisamy AJ, Rayappan JBB. A novel electrochemical sensor based on a nickel-metal organic framework for efficient electrocatalytic oxidation and rapid detection of lactate. New J Chem 2018;42:11839-46. [DOI: 10.1039/c8nj02118j] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 3.8] [Reference Citation Analysis]