BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chudy M, Tokarska K, Jastrzębska E, Bułka M, Drozdek S, Lamch Ł, Wilk KA, Brzózka Z. Lab-on-a-chip systems for photodynamic therapy investigations. Biosens Bioelectron 2018;101:37-51. [PMID: 29035761 DOI: 10.1016/j.bios.2017.10.013] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Cai Z, Yu J, Hu J, Sun K, Liu M, Gu D, Chen J, Xu Y, He X, Wei W, Wang Z, Sun B. Three near-infrared and lysosome-targeting probes for photodynamic therapy (PDT). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2023;286:122027. [DOI: 10.1016/j.saa.2022.122027] [Reference Citation Analysis]
2 Cruz A, Carneiro S, Pontes S, Oliveira J, Lima J, Costa V, Fechine L, Clemente C, Freire R, Fechine P. Sensing Materials: Optical Sensing Based on Carbon Quantum Dots. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00025-x] [Reference Citation Analysis]
3 Cheng Z, Li Y, Zhao D, Zhao W, Wu M, Zhang W, Cui Y, Zhang P, Zhang Z. Nanocarriers for intracellular co-delivery of proteins and small-molecule drugs for cancer therapy. Front Bioeng Biotechnol 2022;10:994655. [DOI: 10.3389/fbioe.2022.994655] [Reference Citation Analysis]
4 Staicu CE, Jipa F, Porosnicu I, Bran A, Stancu E, Dobrea C, Radu BM, Axente E, Tiseanu I, Sima F, Sugioka K. Glass lab-on-a-chip platform fabricated by picosecond laser for testing tumor cells exposed to X-ray radiation. Appl Phys A 2022;128. [DOI: 10.1007/s00339-022-05915-0] [Reference Citation Analysis]
5 Zhang X, Wan J, Mo F, Tang D, Xiao H, Li Z, Jia J, Liu T. Targeting Bone Tumor and Subcellular Endoplasmic Reticulum via Near Infrared II Fluorescent Polymer for Photodynamic-Immunotherapy to Break the Step-Reduction Delivery Dilemma. Adv Sci (Weinh) 2022;:e2201819. [PMID: 35754296 DOI: 10.1002/advs.202201819] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Nath S, Pigula M, Hasan T, Rizvi I. A Perfusion Model to Evaluate Response to Photodynamic Therapy in 3D Tumors. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-2099-1_4] [Reference Citation Analysis]
7 Broekgaarden M, Coll J. Microtumor Models as a Preclinical Investigational Platform for Photodynamic Therapy. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-2099-1_3] [Reference Citation Analysis]
8 Miranda RR, Sampaio I, Zucolotto V. Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids Surf B Biointerfaces 2021;210:112254. [PMID: 34896692 DOI: 10.1016/j.colsurfb.2021.112254] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
9 Kirar S, Thakur NS, Reddy YN, Banerjee UC, Bhaumik J. Insights on the polypyrrole based nanoformulations for photodynamic therapy. J Porphyrins Phthalocyanines 2021;25:605-22. [DOI: 10.1142/s1088424621300032] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Flont M, Jastrzębska E, Brzózka Z. A multilayered cancer-on-a-chip model to analyze the effectiveness of new-generation photosensitizers. Analyst 2020;145:6937-47. [PMID: 32851999 DOI: 10.1039/d0an00911c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
11 Lamch Ł, Gancarz R, Tsirigotis-Maniecka M, Moszyńska IM, Ciejka J, Wilk KA. Studying the "Rigid-Flexible" Properties of Polymeric Micelle Core-Forming Segments with a Hydrophobic Phthalocyanine Probe Using NMR and UV Spectroscopy. Langmuir 2021;37:4316-30. [PMID: 33794644 DOI: 10.1021/acs.langmuir.1c00328] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
12 Sun S, Ding Z, Yang X, Zhao X, Zhao M, Gao L, Chen Q, Xie S, Liu A, Yin S, Xu Z, Lu X. Nanobody: A Small Antibody with Big Implications for Tumor Therapeutic Strategy. Int J Nanomedicine 2021;16:2337-56. [PMID: 33790553 DOI: 10.2147/IJN.S297631] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
13 Oliveira H, Correia P, Pereira AR, Araújo P, Mateus N, de Freitas V, Oliveira J, Fernandes I. Exploring the Applications of the Photoprotective Properties of Anthocyanins in Biological Systems. Int J Mol Sci 2020;21:E7464. [PMID: 33050431 DOI: 10.3390/ijms21207464] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
14 Lamch Ł, Ronka S, Warszyński P, Wilk KA. NMR studies of self-organization behavior of hydrophobically functionalized poly(4-styrenosulfonic-co-maleic acid) in aqueous solution. Journal of Molecular Liquids 2020;308:112990. [DOI: 10.1016/j.molliq.2020.112990] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
15 Zhang H, Pei Y, Zhang X, Zhu L, Hou L, Chang J, Zhang Z. Engineering of an intelligent cascade nanoreactor for sequential improvement of microenvironment and enhanced tumor phototherapy. Applied Materials Today 2020;18:100494. [DOI: 10.1016/j.apmt.2019.100494] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
16 Wei J, Cheng L, Li J, Liu Y, Yin S, Xu B, Wang D, Lu H, Liu C. A microfluidic platform culturing two cell lines paralleled under in-vivo like fluidic microenvironment for testing the tumor targeting of nanoparticles. Talanta 2020;208:120355. [PMID: 31816718 DOI: 10.1016/j.talanta.2019.120355] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Flont M, Jastrzębska E, Brzózka Z. Synergistic effect of the combination therapy on ovarian cancer cells under microfluidic conditions. Anal Chim Acta 2020;1100:138-48. [PMID: 31987134 DOI: 10.1016/j.aca.2019.11.047] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
18 Bao Y, Yin L, Liu L, Chen L. Acid‐sensitive ROS‐triggered dextran‐based drug delivery system for advanced chemo‐photodynamic synergistic therapy. J Biomed Mater Res 2019;108:148-56. [DOI: 10.1002/jbm.a.36800] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
19 Wang G, Liu J, Zhu L, Guo Y, Yang L. Silver sulfide nanoparticles for photodynamic therapy of human lymphoma cells via disruption of energy metabolism. RSC Adv 2019;9:29936-41. [PMID: 35531500 DOI: 10.1039/c9ra05432d] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
20 Shao J, Ye J, Zhang Y, Salem S, Zhao Z, Yu J. Effect of the microchannel obstacles on the pressure performance and flow behaviors of the hydrogen Knudsen compressor. International Journal of Hydrogen Energy 2019;44:22691-703. [DOI: 10.1016/j.ijhydene.2019.03.075] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
21 Lamch Ł, Kulbacka J, Dubińska-magiera M, Saczko J, Wilk KA. Folate-directed zinc (II) phthalocyanine loaded polymeric micelles engineered to generate reactive oxygen species for efficacious photodynamic therapy of cancer. Photodiagnosis and Photodynamic Therapy 2019;25:480-91. [DOI: 10.1016/j.pdpdt.2019.02.014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
22 Tokarska K, Bazylinska U, Jastrzebska E, Chudy M, Dybko A, Wilk KA, Brzozka Z. Selective cancer-killing ability of new efficient porphyrin-based nanophotosensitizer in Lab-on-a-chip system. Sensors and Actuators B: Chemical 2019;282:665-74. [DOI: 10.1016/j.snb.2018.11.115] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
23 Lamch Ł, Pucek A, Kulbacka J, Chudy M, Jastrzębska E, Tokarska K, Bułka M, Brzózka Z, Wilk KA. Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Adv Colloid Interface Sci 2018;261:62-81. [PMID: 30262128 DOI: 10.1016/j.cis.2018.09.002] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 12.5] [Reference Citation Analysis]
24 Zhang J, Misra RDK. Nanomaterials in microfluidics for disease diagnosis and therapy development. Materials Technology 2018;34:92-116. [DOI: 10.1080/10667857.2018.1527803] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
25 Kozitsina AN, Svalova TS, Malysheva NN, Okhokhonin AV, Vidrevich MB, Brainina KZ. Sensors Based on Bio and Biomimetic Receptors in Medical Diagnostic, Environment, and Food Analysis. Biosensors (Basel) 2018;8:E35. [PMID: 29614784 DOI: 10.3390/bios8020035] [Cited by in Crossref: 70] [Cited by in F6Publishing: 71] [Article Influence: 17.5] [Reference Citation Analysis]
26 Martinez-cisneros C, da Rocha Z, Seabra A, Valdés F, Alonso-chamarro J. Highly integrated autonomous lab-on-a-chip device for on-line and in situ determination of environmental chemical parameters. Lab Chip 2018;18:1884-90. [DOI: 10.1039/c8lc00309b] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
27 Marzioch J, Kieninger J, Weltin A, Flamm H, Aravindalochanan K, Sandvik JA, Pettersen EO, Peng Q, Urban GA. On-chip photodynamic therapy – monitoring cell metabolism using electrochemical microsensors. Lab Chip 2018;18:3353-60. [DOI: 10.1039/c8lc00799c] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
28 Huang C, Zheng J, Ma D, Liu N, Zhu C, Li J, Yang R. Hypoxia-triggered gene therapy: a new drug delivery system to utilize photodynamic-induced hypoxia for synergistic cancer therapy. J Mater Chem B 2018;6:6424-30. [DOI: 10.1039/c8tb01805g] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]