BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang J, Guo J, Zhang J, Zhang W, Zhang Y. RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes. Biosens Bioelectron 2017;95:100-5. [PMID: 28431362 DOI: 10.1016/j.bios.2017.04.014] [Cited by in Crossref: 60] [Cited by in F6Publishing: 52] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Guan B, Zhang X. Aptamers as Versatile Ligands for Biomedical and Pharmaceutical Applications. Int J Nanomedicine 2020;15:1059-71. [PMID: 32110008 DOI: 10.2147/IJN.S237544] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
2 Noh S, Kim J, Kim G, Park C, Jang H, Lee M, Lee T. Recent Advances in CRP Biosensor Based on Electrical, Electrochemical and Optical Methods. Sensors (Basel) 2021;21:3024. [PMID: 33925825 DOI: 10.3390/s21093024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Yáñez-Sedeño P, González-Cortés A, Campuzano S, Pingarrón JM. Multimodal/Multifunctional Nanomaterials in (Bio)electrochemistry: Now and in the Coming Decade. Nanomaterials (Basel) 2020;10:E2556. [PMID: 33352731 DOI: 10.3390/nano10122556] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
4 Kim J, Park JA, Yim G, Jang H, Kim TH, Sohn H, Lee T. Fabrication of an electrochemical biosensor composed of multi-functional Ag ion intercalated DNA four-way junctions/rhodium nanoplate heterolayer on a micro-gap for C-reactive protein detection in human serum. Analyst 2021;146:2131-7. [PMID: 33861260 DOI: 10.1039/d0an02135k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Shatunova EA, Korolev MA, Omelchenko VO, Kurochkina YD, Davydova AS, Venyaminova AG, Vorobyeva MA. Aptamers for Proteins Associated with Rheumatic Diseases: Progress, Challenges, and Prospects of Diagnostic and Therapeutic Applications. Biomedicines 2020;8:E527. [PMID: 33266394 DOI: 10.3390/biomedicines8110527] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Zhang X, Feng Y, Yao Q, He F. Selection of a new Mycobacterium tuberculosis H37Rv aptamer and its application in the construction of a SWCNT/aptamer/Au-IDE MSPQC H37Rv sensor. Biosens Bioelectron 2017;98:261-6. [PMID: 28689112 DOI: 10.1016/j.bios.2017.05.043] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
7 Tang M, Mao X, Gong Y, Qing L, Xie J. Research Progress of C-reactive Protein Analysis. Chinese Journal of Analytical Chemistry 2020;48:1121-30. [DOI: 10.1016/s1872-2040(20)60040-8] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 António M, Nogueira J, Vitorino R, Daniel-da-Silva AL. Functionalized Gold Nanoparticles for the Detection of C-Reactive Protein. Nanomaterials (Basel) 2018;8:E200. [PMID: 29597295 DOI: 10.3390/nano8040200] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
9 Vilian ATE, Kim W, Park B, Oh SY, Kim T, Huh YS, Hwangbo CK, Han YK. Efficient electron-mediated electrochemical biosensor of gold wire for the rapid detection of C-reactive protein: A predictive strategy for heart failure. Biosens Bioelectron 2019;142:111549. [PMID: 31400725 DOI: 10.1016/j.bios.2019.111549] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
10 He Q, Bao M, Hass K, Lin W, Qin P, Du K. Perspective of Molecular Diagnosis in Healthcare: From Barcode to Pattern Recognition. Diagnostics (Basel) 2019;9:E75. [PMID: 31337082 DOI: 10.3390/diagnostics9030075] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Sadighbayan D, Sadighbayan K, Tohid-kia MR, Khosroushahi AY, Hasanzadeh M. Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. TrAC Trends in Analytical Chemistry 2019;118:73-88. [DOI: 10.1016/j.trac.2019.05.014] [Cited by in Crossref: 51] [Cited by in F6Publishing: 28] [Article Influence: 17.0] [Reference Citation Analysis]
12 Bahreyni A, Tahmasebi S, Ramezani M, Alibolandi M, Danesh NM, Abnous K, Taghdisi SM. A novel fluorescent aptasensor for sensitive detection of PDGF-BB protein based on a split complementary strand of aptamer and magnetic beads. Sensors and Actuators B: Chemical 2019;280:10-5. [DOI: 10.1016/j.snb.2018.10.047] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
13 Kim SM, Kim J, Yim G, Ahn HJ, Lee M, Kim TH, Park C, Min J, Jang H, Lee T. Fabrication of a surface-enhanced Raman spectroscopy-based analytical method consisting of multifunctional DNA three-way junction-conjugated porous gold nanoparticles and Au-Te nanoworm for C-reactive protein detection. Anal Bioanal Chem 2021. [PMID: 34350496 DOI: 10.1007/s00216-021-03559-2] [Reference Citation Analysis]
14 Meng W, Li M, Zhang Y. Adriamycin coated silica microspheres as labels for cancer biomarker alpha-fetoprotein detection. Anal Methods 2021;13:2665-70. [PMID: 34046653 DOI: 10.1039/d1ay00655j] [Reference Citation Analysis]
15 Bagheri E, Ansari L, Sameiyan E, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Sensors design based on hybrid gold-silica nanostructures. Biosensors and Bioelectronics 2020;153:112054. [DOI: 10.1016/j.bios.2020.112054] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
16 Dhara K, Mahapatra DR. Review on electrochemical sensing strategies for C-reactive protein and cardiac troponin I detection. Microchemical Journal 2020;156:104857. [DOI: 10.1016/j.microc.2020.104857] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
17 Zhang J, Zhang W, Guo J, Wang J, Zhang Y. Electrochemical detection of C-reactive protein using Copper nanoparticles and hybridization chain reaction amplifying signal. Analytical Biochemistry 2017;539:1-7. [DOI: 10.1016/j.ab.2017.09.017] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 5.2] [Reference Citation Analysis]
18 Ziółkowski R, Jarczewska M, Górski Ł, Malinowska E. From Small Molecules Toward Whole Cells Detection: Application of Electrochemical Aptasensors in Modern Medical Diagnostics. Sensors (Basel) 2021;21:724. [PMID: 33494499 DOI: 10.3390/s21030724] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
19 Jarczewska M, Malinowska E. The application of antibody-aptamer hybrid biosensors in clinical diagnostics and environmental analysis. Anal Methods 2020;12:3183-99. [PMID: 32930180 DOI: 10.1039/d0ay00678e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
20 Wang C, Wang Q, Tan R. Preparation of enzyme-functionalized carbon nanotubes and their application in glucose and Fe 2+ detection through “turn on” and “turn off” approaches. Analyst 2018;143:4118-27. [DOI: 10.1039/c8an00823j] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
21 Tao X, Wang X, Liu B, Liu J. Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosens Bioelectron 2020;168:112537. [PMID: 32882473 DOI: 10.1016/j.bios.2020.112537] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 13.5] [Reference Citation Analysis]
22 Selvarajan RS, Gopinath SCB, Zin NM, Hamzah AA. Infection-Mediated Clinical Biomarkers for a COVID-19 Electrical Biosensing Platform. Sensors (Basel) 2021;21:3829. [PMID: 34205852 DOI: 10.3390/s21113829] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Yan X, Jiang M, Jian Y, Luo J, Xue X, Chen X, Zheng X, Ai F. Simultaneous aptasensor assay of ochratoxin A and adenosine triphosphate in beer based on Fe 3 O 4 and SiO 2 nanoparticle as carriers. Anal Methods 2020;12:2253-9. [DOI: 10.1039/d0ay00311e] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Sonuç Karaboğa MN, Sezgintürk MK. Determination of C-reactive protein by PAMAM decorated ITO based disposable biosensing system: A new immunosensor design from an old molecule. Talanta 2018;186:162-8. [DOI: 10.1016/j.talanta.2018.04.051] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
25 Meng W, Zhang W, Zhang J, Chen X, Zhang Y. An electrochemical immunosensor for prostate specific antigen using nitrogen-doped graphene as a sensing platform. Anal Methods 2019;11:2183-9. [DOI: 10.1039/c9ay00064j] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
26 Yang S, Zhang F, Wang Z, Liang Q. A graphene oxide-based label-free electrochemical aptasensor for the detection of alpha-fetoprotein. Biosens Bioelectron 2018;112:186-92. [PMID: 29705616 DOI: 10.1016/j.bios.2018.04.026] [Cited by in Crossref: 65] [Cited by in F6Publishing: 54] [Article Influence: 16.3] [Reference Citation Analysis]
27 Yi K, Wang Y, Shi K, Chi J, Lyu J, Zhao Y. Aptamer-decorated porous microneedles arrays for extraction and detection of skin interstitial fluid biomarkers. Biosens Bioelectron 2021;190:113404. [PMID: 34182204 DOI: 10.1016/j.bios.2021.113404] [Reference Citation Analysis]
28 Yousefi F, Movahedpour A, Shabaninejad Z, Ghasemi Y, Rabbani S, Sobnani-nasab A, Mohammadi S, Hajimoradi B, Rezaei S, Savardashtaki A, Mazoochi M, Mirzaei H. Electrochemical-Based Biosensors: New Diagnosis Platforms for Cardiovascular Disease. CMC 2020;27:2550-75. [DOI: 10.2174/0929867326666191024114207] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
29 Ma Y, Yang J, Yang T, Deng Y, Gu M, Wang M, Hu R, Yang Y. Electrochemical detection of C-reactive protein using functionalized iridium nanoparticles/graphene oxide as a tag. RSC Adv 2020;10:9723-9. [DOI: 10.1039/c9ra10386d] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]
30 Farzin L, Shamsipur M, Samandari L, Sheibani S. Recent advances in designing nanomaterial based biointerfaces for electrochemical biosensing cardiovascular biomarkers. J Pharm Biomed Anal 2018;161:344-76. [PMID: 30205301 DOI: 10.1016/j.jpba.2018.08.060] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 4.8] [Reference Citation Analysis]
31 Li Z, Mohamed MA, Vinu Mohan AM, Zhu Z, Sharma V, Mishra GK, Mishra RK. Application of Electrochemical Aptasensors toward Clinical Diagnostics, Food, and Environmental Monitoring: Review. Sensors (Basel) 2019;19:E5435. [PMID: 31835479 DOI: 10.3390/s19245435] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
32 Lv Y, Li J, Wu R, Wang G, Wu M, Shen H, Li LS. Silica-encapsulated quantum dots for highly efficient and stable fluorescence immunoassay of C-reactive protein. Biochemical Engineering Journal 2018;137:344-51. [DOI: 10.1016/j.bej.2018.06.016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
33 Szot-Karpińska K, Kudła P, Szarota A, Narajczyk M, Marken F, Niedziółka-Jönsson J. CRP-binding bacteriophage as a new element of layer-by-layer assembly carbon nanofiber modified electrodes. Bioelectrochemistry 2020;136:107629. [PMID: 32818758 DOI: 10.1016/j.bioelechem.2020.107629] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Bakirhan NK, Ozcelikay G, Ozkan SA. Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors. J Pharm Biomed Anal 2018;159:406-24. [PMID: 30036704 DOI: 10.1016/j.jpba.2018.07.021] [Cited by in Crossref: 44] [Cited by in F6Publishing: 31] [Article Influence: 11.0] [Reference Citation Analysis]
35 Azzouz A, Hejji L, Sonne C, Kim KH, Kumar V. Nanomaterial-based aptasensors as an efficient substitute for cardiovascular disease diagnosis: Future of smart biosensors. Biosens Bioelectron 2021;193:113617. [PMID: 34555756 DOI: 10.1016/j.bios.2021.113617] [Reference Citation Analysis]
36 Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. Adv Sci (Weinh) 2020;7:1902980. [PMID: 32670744 DOI: 10.1002/advs.201902980] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 7.5] [Reference Citation Analysis]
37 António M, Ferreira R, Vitorino R, Daniel-da-Silva AL. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. Talanta 2020;214:120868. [PMID: 32278414 DOI: 10.1016/j.talanta.2020.120868] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
38 Yang Z, Zhang W, Yin Y, Fang W, Xue H. Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens. Food Control 2022;133:108684. [DOI: 10.1016/j.foodcont.2021.108684] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Asadzadeh H, Moosavi A, Alexandrakis G, Mofrad MRK. Atomic Scale Interactions between RNA and DNA Aptamers with the TNF-α Protein. Biomed Res Int 2021;2021:9926128. [PMID: 34327241 DOI: 10.1155/2021/9926128] [Reference Citation Analysis]
40 Piccoli J, Hein R, El-Sagheer AH, Brown T, Cilli EM, Bueno PR, Davis JJ. Redox Capacitive Assaying of C-Reactive Protein at a Peptide Supported Aptamer Interface. Anal Chem 2018;90:3005-8. [PMID: 29411973 DOI: 10.1021/acs.analchem.7b05374] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
41 Adesina A, Mashazi P. Oriented Antibody Covalent Immobilization for Label-Free Impedimetric Detection of C-Reactive Protein via Direct and Sandwich Immunoassays. Front Chem 2021;9:587142. [PMID: 34150714 DOI: 10.3389/fchem.2021.587142] [Reference Citation Analysis]
42 Kowalczyk A, Sęk JP, Kasprzak A, Poplawska M, Grudzinski IP, Nowicka AM. Occlusion phenomenon of redox probe by protein as a way of voltammetric detection of non-electroactive C-reactive protein. Biosensors and Bioelectronics 2018;117:232-9. [DOI: 10.1016/j.bios.2018.06.019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
43 Sun S, Luo J, Zhu Y, Kong F, Mao G, Ming T, Xing Y, Liu J, Dai Y, Yan S, Yang Y, Cai X. Multifunctional self-driven origami paper-based integrated microfluidic chip to detect CRP and PAB in whole blood. Biosensors and Bioelectronics 2022;208:114225. [DOI: 10.1016/j.bios.2022.114225] [Reference Citation Analysis]
44 Walcarius A. Silica-based electrochemical sensors and biosensors: Recent trends. Current Opinion in Electrochemistry 2018;10:88-97. [DOI: 10.1016/j.coelec.2018.03.017] [Cited by in Crossref: 55] [Cited by in F6Publishing: 22] [Article Influence: 13.8] [Reference Citation Analysis]
45 Rahman MM, Lopa NS, Lee J. Advances in electrochemical aptasensing for cardiac biomarkers. Bulletin Korean Chem Soc. [DOI: 10.1002/bkcs.12434] [Reference Citation Analysis]
46 Sohrabi H, kholafazad Kordasht H, Pashazadeh-panahi P, Nezhad-mokhtari P, Hashemzaei M, Majidi MR, Mosafer J, Oroojalian F, Mokhtarzadeh A, de la Guardia M. Recent advances of electrochemical and optical biosensors for detection of C-reactive protein as a major inflammatory biomarker. Microchemical Journal 2020;158:105287. [DOI: 10.1016/j.microc.2020.105287] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
47 Fan F, Wang L, Li Y, Wang X, Lu X, Guo Y. A novel process for the preparation of Cys-Si-NIPAM as a stationary phase of hydrophilic interaction liquid chromatography (HILIC). Talanta 2020;218:121154. [DOI: 10.1016/j.talanta.2020.121154] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Tang MQ, Xie J, Rao LM, Kan YJ, Luo P, Qing LS. Advances in aptamer-based sensing assays for C-reactive protein. Anal Bioanal Chem 2021. [PMID: 34581827 DOI: 10.1007/s00216-021-03674-0] [Reference Citation Analysis]
49 Yáñez-Sedeño P, Campuzano S, Pingarrón JM. Pushing the limits of electrochemistry toward challenging applications in clinical diagnosis, prognosis, and therapeutic action. Chem Commun (Camb) 2019;55:2563-92. [PMID: 30688320 DOI: 10.1039/c8cc08815b] [Cited by in Crossref: 27] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
50 Jyoti A, Kumar S, Kumar Srivastava V, Kaushik S, Govind Singh S. Neonatal sepsis at point of care. Clin Chim Acta 2021;521:45-58. [PMID: 34153274 DOI: 10.1016/j.cca.2021.06.021] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
51 Zhang X, Chi KN, Li DL, Deng Y, Ma YC, Xu QQ, Hu R, Yang YH. 2D-porphrinic covalent organic framework-based aptasensor with enhanced photoelectrochemical response for the detection of C-reactive protein. Biosens Bioelectron 2019;129:64-71. [PMID: 30684856 DOI: 10.1016/j.bios.2019.01.009] [Cited by in Crossref: 37] [Cited by in F6Publishing: 27] [Article Influence: 12.3] [Reference Citation Analysis]
52 Liu LS, Wang F, Ge Y, Lo PK. Recent Developments in Aptasensors for Diagnostic Applications. ACS Appl Mater Interfaces 2021;13:9329-58. [PMID: 33155468 DOI: 10.1021/acsami.0c14788] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
53 Wang S, Luo J, He Y, Chai Y, Yuan R, Yang X. Combining Porous Magnetic Ni@C Nanospheres and CaCO3 Microcapsule as Surface-Enhanced Raman Spectroscopy Sensing Platform for Hypersensitive C-Reactive Protein Detection. ACS Appl Mater Interfaces 2018;10:33707-12. [PMID: 30182714 DOI: 10.1021/acsami.8b13061] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
54 Ribeiro SHD, Alves LM, Flauzino JMR, Moço ACR, Segatto MS, Silva JP, Borges LFA, Madurro JM, Madurro AGB. Reusable Immunosensor for Detection of C‐reactive Protein in Human Serum. Electroanalysis 2020;32:2316-22. [DOI: 10.1002/elan.202000043] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Wang YH, Chen YX, Wu X, Huang KJ. Electrochemical biosensor based on Se-doped MWCNTs-graphene and Y-shaped DNA-aided target-triggered amplification strategy. Colloids Surf B Biointerfaces 2018;172:407-13. [PMID: 30195158 DOI: 10.1016/j.colsurfb.2018.08.064] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 6.5] [Reference Citation Analysis]
56 Yang S, Zhang F, Liang Q, Wang Z. A three-dimensional graphene-based ratiometric signal amplification aptasensor for MUC1 detection. Biosensors and Bioelectronics 2018;120:85-92. [DOI: 10.1016/j.bios.2018.08.036] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 7.8] [Reference Citation Analysis]
57 Balayan S, Chauhan N, Chandra R, Kuchhal NK, Jain U. Recent advances in developing biosensing based platforms for neonatal sepsis. Biosens Bioelectron 2020;169:112552. [PMID: 32931992 DOI: 10.1016/j.bios.2020.112552] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
58 Dong S, Zhang D, Cui H, Huang T. ZnO/porous carbon composite from a mixed-ligand MOF for ultrasensitive electrochemical immunosensing of C-reactive protein. Sensors and Actuators B: Chemical 2019;284:354-61. [DOI: 10.1016/j.snb.2018.12.150] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]