BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jin B, Wang S, Lin M, Jin Y, Zhang S, Cui X, Gong Y, Li A, Xu F, Lu TJ. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosens Bioelectron 2017;90:525-33. [PMID: 27825886 DOI: 10.1016/j.bios.2016.10.029] [Cited by in Crossref: 139] [Cited by in F6Publishing: 115] [Article Influence: 23.2] [Reference Citation Analysis]
Number Citing Articles
1 Jiang R, Lu L, Cao X, Sun C, Xia J, Wang Z. A low-background aptasensor based on enzyme-linked multifunctional carbon nanosheets for the detection of Salmonella. Sensors and Actuators B: Chemical 2022;370:132412. [DOI: 10.1016/j.snb.2022.132412] [Reference Citation Analysis]
2 Khoshbin Z, Davoodian N, Taghdisi SM, Abnous K. Metal organic frameworks as advanced functional materials for aptasensor design. Spectrochim Acta A Mol Biomol Spectrosc 2022;276:121251. [PMID: 35429856 DOI: 10.1016/j.saa.2022.121251] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Yu W, Hao A, Mei Y, Yang Y, Dai C. A turn-on fluorescent aptasensor for ampicillin detection based on gold nanoparticles and CdTe QDs. Microchemical Journal 2022;179:107454. [DOI: 10.1016/j.microc.2022.107454] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Shi S, Chen J, Wang X, Xiao M, Chandrasekaran AR, Li L, Yi C, Pei H. Biointerface Engineering with Nucleic Acid Materials for Biosensing Applications. Adv Funct Materials. [DOI: 10.1002/adfm.202201069] [Reference Citation Analysis]
5 Ngashangva L, Hemdan BA, El-Liethy MA, Bachu V, Minteer SD, Goswami P. Emerging Bioanalytical Devices and Platforms for Rapid Detection of Pathogens in Environmental Samples. Micromachines (Basel) 2022;13:1083. [PMID: 35888900 DOI: 10.3390/mi13071083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Prabakaran G, Velmurugan K, David CI, Nandhakumar R. Role of Förster Resonance Energy Transfer in Graphene-Based Nanomaterials for Sensing. Applied Sciences 2022;12:6844. [DOI: 10.3390/app12146844] [Reference Citation Analysis]
7 Chen Y, Yang X, Zhao C, Lu C, Wu W, Wang X. Novel upconversion fluorescence sensor for the detection and imaging of procyanidins in foods by NaYF4:Yb/Tm@NaYF4:Yb-Cit-CD. Journal of Food Composition and Analysis 2022;110:104557. [DOI: 10.1016/j.jfca.2022.104557] [Reference Citation Analysis]
8 Costa SP, Cunha AP, Freitas PP, Carvalho CM. A Phage Receptor-Binding Protein as a Promising Tool for the Detection of Escherichia coli in Human Specimens. Front Microbiol 2022;13:871855. [PMID: 35722298 DOI: 10.3389/fmicb.2022.871855] [Reference Citation Analysis]
9 Saxena S, Punjabi K, Ahamad N, Singh S, Bendale P, Banerjee R. Nanotechnology Approaches for Rapid Detection and Theranostics of Antimicrobial Resistant Bacterial Infections. ACS Biomater Sci Eng 2022;8:2232-57. [PMID: 35546526 DOI: 10.1021/acsbiomaterials.1c01516] [Reference Citation Analysis]
10 Grazon C, Chern M, Lally P, Baer RC, Fan A, Lecommandoux S, Klapperich C, Dennis AM, Galagan JE, Grinstaff MW. The quantum dot vs. organic dye conundrum for ratiometric FRET-based biosensors: which one would you chose? Chem Sci 2022;13:6715-31. [PMID: 35756504 DOI: 10.1039/d1sc06921g] [Reference Citation Analysis]
11 Afsharipour R, Haji Shabani AM, Dadfarnia S. A selective off–on fluorescent aptasensor for alpha-fetoprotein determination based on N-carbon quantum dots and oxidized nanocellulose. Journal of Photochemistry and Photobiology A: Chemistry 2022;428:113872. [DOI: 10.1016/j.jphotochem.2022.113872] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Ji G, Wang Y, Qin Y, Peng Y, Li S, Han D, Ren S, Qin K, Li S, Gao Z, Han T. Latest developments in the upconversion nanotechnology for the rapid detection of food safety: A review. Nanotechnology Reviews 2022;11:2110-22. [DOI: 10.1515/ntrev-2022-0086] [Reference Citation Analysis]
13 Chen T, Shang Y, Zhu Y, Hao S, Yang C. Activators Confined Upconversion Nanoprobe with Near-Unity Förster Resonance Energy Transfer Efficiency for Ultrasensitive Detection. ACS Appl Mater Interfaces 2022;14:19826-35. [PMID: 35438973 DOI: 10.1021/acsami.2c00604] [Reference Citation Analysis]
14 Yi J, Li X, Cui D, Han L, Jiang W, Zhang R, Niu N, Chen L. Fabricating UCNPs-AuNPs Fluorescent Probe for Sensitive Sensing Thiamphenicol. Chem Res Chin Univ . [DOI: 10.1007/s40242-022-2032-y] [Reference Citation Analysis]
15 Anh NH, Doan MQ, Dinh NX, Huy TQ, Tri DQ, Ngoc Loan LT, Van Hao B, Le AT. Gold nanoparticle-based optical nanosensors for food and health safety monitoring: recent advances and future perspectives. RSC Adv 2022;12:10950-88. [PMID: 35425077 DOI: 10.1039/d1ra08311b] [Reference Citation Analysis]
16 Liu R, Haruna SA, Ali S, Xu J, Ouyang Q, Li H, Chen Q. An Up-conversion signal probe-MnO2 nanosheet sensor for rapid and sensitive detection of tetracycline in food. Spectrochim Acta A Mol Biomol Spectrosc 2022;270:120855. [PMID: 35065424 DOI: 10.1016/j.saa.2022.120855] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Dubey N, Chandra S. Upconversion nanoparticles: Recent strategies and mechanism based applications. Journal of Rare Earths 2022. [DOI: 10.1016/j.jre.2022.04.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Liu X, Wang T, Wu Y, Tan Y, Jiang T, Li K, Lou B, Chen L, Liu Y, Liu Z. Aptamer based probes for living cell intracellular molecules detection. Biosens Bioelectron 2022;208:114231. [PMID: 35390719 DOI: 10.1016/j.bios.2022.114231] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Yan C, Sun Y, Yao M, Jin X, Yang Q, Wu W. pH-responsive nanoparticles and automated detection apparatus for dual detection of pathogenic bacteria. Sensors and Actuators B: Chemical 2022;354:131117. [DOI: 10.1016/j.snb.2021.131117] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Liu R, Haruna SA, Ali S, Xu J, Zhang Y, Lü P, Li H, Chen Q. A sensitive and accurate fluorescent genosensor for Staphylococcus aureus detection. Sensors and Actuators B: Chemical 2022;355:131311. [DOI: 10.1016/j.snb.2021.131311] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Bing-shuai Z, Shi-han X, Song-tao H, Li-heng S, Jie-kai L, Rui S, Wei L, Xue B, Lin X, Lin W, Bing H, Biao D. Recent progress of upconversion nanoparticles in the treatment and detection of various diseases. Chinese Journal of Analytical Chemistry 2022;50:19-32. [DOI: 10.1016/j.cjac.2021.08.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 2022;300:102579. [PMID: 34924169 DOI: 10.1016/j.cis.2021.102579] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Jin B, Li Z, Zhao G, Ji J, Chen J, Yang Y, Xu R. Upconversion fluorescence-based paper disc for multiplex point-of-care testing in water quality monitoring. Analytica Chimica Acta 2022;1192:339388. [DOI: 10.1016/j.aca.2021.339388] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
24 Zhao F, Xie S, Li B, Zhang X. Functional nucleic acids in glycobiology: A versatile tool in the analysis of disease-related carbohydrates and glycoconjugates. Int J Biol Macromol 2022:S0141-8130(22)00048-4. [PMID: 35031315 DOI: 10.1016/j.ijbiomac.2022.01.039] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
25 Liu R, Ali S, Haruna SA, Ouyang Q, Li H, Chen Q. Development of a fluorescence sensing platform for specific and sensitive detection of pathogenic bacteria in food samples. Food Control 2022;131:108419. [DOI: 10.1016/j.foodcont.2021.108419] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
26 Huang Q. Simultaneous quantitative analysis of Listeria monocytogenes and Staphylococcus aureus based on antibiotic-introduced lateral flow immunoassay. Anal Methods 2021;13:5866-74. [PMID: 34877941 DOI: 10.1039/d1ay01467f] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Tang X, Feng C, Pan Q, Sun F, Zhu X. Engineered aptamer for the analysis of cells. TrAC Trends in Analytical Chemistry 2021;145:116456. [DOI: 10.1016/j.trac.2021.116456] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Wu X, Li Y, Yang M, Mao C. Simultaneous ultrasensitive detection of two breast cancer microRNA biomarkers by using a dual nanoparticle/nanosheet fluorescence resonance energy transfer sensor. Materials Today Advances 2021;12:100163. [DOI: 10.1016/j.mtadv.2021.100163] [Reference Citation Analysis]
29 Wu J, Ali S, Ouyang Q, Wang L, Rong Y, Chen Q. Highly specific and sensitive detection of aflatoxin B1 in food based on upconversion nanoparticles-black phosphorus nanosheets aptasensor. Microchemical Journal 2021;171:106847. [DOI: 10.1016/j.microc.2021.106847] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
30 Li N, Zhao B, Stavins R, Peinetti AS, Chauhan N, Bashir R, Cunningham BT, King WP, Lu Y, Wang X, Valera E. Overcoming the limitations of COVID-19 diagnostics with nanostructures, nucleic acid engineering, and additive manufacturing. Curr Opin Solid State Mater Sci 2022;26:100966. [PMID: 34840515 DOI: 10.1016/j.cossms.2021.100966] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
31 Xiao D, Qi H, Teng Y, Pierre D, Kutoka PT, Liu D. Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. Nanoscale Res Lett 2021;16:167. [PMID: 34837561 DOI: 10.1186/s11671-021-03613-z] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
32 Zhang D, Peng R, Liu W, Donovan MJ, Wang L, Ismail I, Li J, Li J, Qu F, Tan W. Engineering DNA on the Surface of Upconversion Nanoparticles for Bioanalysis and Therapeutics. ACS Nano 2021. [PMID: 34766752 DOI: 10.1021/acsnano.1c08036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Liu H, Zhong W, Zhang X, Lin D, Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021;9:7878-908. [PMID: 34611689 DOI: 10.1039/d1tb01316e] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
34 Xu Y, Hassan MM, Zhu A, Li H, Chen Q. Dual-mode of magnetic assisted Au@Ag SERS tags and cationic conjugated UCNPs for qualitative and quantitative analysis of multiple foodborne pathogens. Sensors and Actuators B: Chemical 2021;344:130305. [DOI: 10.1016/j.snb.2021.130305] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
35 Wang Z, Qiu X, Xi W, Tang M, Liu J, Jiang H, Sun L. Tailored upconversion nanomaterial: A hybrid nano fluorescent sensor for evaluating efficacy of lactate dehydrogenase inhibitors as anticancer drugs. Sensors and Actuators B: Chemical 2021;345:130417. [DOI: 10.1016/j.snb.2021.130417] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
36 Yue H, Chen J, Chen X, Wang X, Zhang Y, Zhou N. Systematic screening and optimization of single-stranded DNA aptamer specific for N-acetylneuraminic acid: A comparative study. Sensors and Actuators B: Chemical 2021;344:130270. [DOI: 10.1016/j.snb.2021.130270] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
37 Huang Y, Su Z, Li W, Ren J. Recent Progresses on Biosensors for Escherichia coli Detection. Food Anal Methods 2022;15:338-66. [DOI: 10.1007/s12161-021-02129-7] [Reference Citation Analysis]
38 Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021;11:9133-61. [PMID: 34522231 DOI: 10.7150/thno.61804] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
39 Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021;121:9243-358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Reference Citation Analysis]
40 Yang SZ, Liu QA, Liu YL, Weng GJ, Zhu J, Li JJ. Recent progress in the optical detection of pathogenic bacteria based on noble metal nanoparticles. Mikrochim Acta 2021;188:258. [PMID: 34268648 DOI: 10.1007/s00604-021-04885-z] [Reference Citation Analysis]
41 Ding L, Jiang L, Liu G. The Application of Inorganic Optical Nanoprobes in Bacterial Infection. J Innov Opt Health Sci 2021;14:2130004. [DOI: 10.1142/s1793545821300044] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Landa G, Miranda-Calderon LG, Sebastian V, Irusta S, Mendoza G, Arruebo M. Selective point-of-care detection of pathogenic bacteria using sialic acid functionalized gold nanoparticles. Talanta 2021;234:122644. [PMID: 34364453 DOI: 10.1016/j.talanta.2021.122644] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
43 Abdul Hakeem D, Su S, Mo Z, Wen H. Upconversion luminescent nanomaterials: A promising new platform for food safety analysis. Crit Rev Food Sci Nutr 2021;:1-42. [PMID: 34159870 DOI: 10.1080/10408398.2021.1937039] [Reference Citation Analysis]
44 Jia F, Bai X, Zhang X, Fu Y, Li Y, Li X, Kokini JL. A Low-Field Magnetic Resonance Imaging Aptasensor for the Rapid and Visual Sensing of Pseudomonas aeruginosa in Food, Juice, and Water. Anal Chem 2021;93:8631-7. [PMID: 34107210 DOI: 10.1021/acs.analchem.1c01669] [Reference Citation Analysis]
45 Rong Y, Hassan MM, Ouyang Q, Chen Q. Lanthanide ion (Ln3+ )-based upconversion sensor for quantification of food contaminants: A review. Compr Rev Food Sci Food Saf 2021;20:3531-78. [PMID: 34076359 DOI: 10.1111/1541-4337.12765] [Reference Citation Analysis]
46 Ansari AA, Thakur VK, Chen G. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coordination Chemistry Reviews 2021;436:213821. [DOI: 10.1016/j.ccr.2021.213821] [Cited by in Crossref: 17] [Cited by in F6Publishing: 24] [Article Influence: 17.0] [Reference Citation Analysis]
47 Shen Y, Zhang Y, Gao ZF, Ye Y, Wu Q, Chen H, Xu J. Recent advances in nanotechnology for simultaneous detection of multiple pathogenic bacteria. Nano Today 2021;38:101121. [DOI: 10.1016/j.nantod.2021.101121] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
48 Singhal C, Bruno JG, Kaushal A, Sharma TK. Recent Advances and a Roadmap to Aptamer-Based Sensors for Bloodstream Infections. ACS Appl Bio Mater 2021;4:3962-84. [PMID: 35006817 DOI: 10.1021/acsabm.0c01358] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
49 Guo Z, Huang X, Li Z, Shi J, Zhai X, Hu X, Liang N, Zou X. Rapid and highly sensitive detection of Salmonella typhimurium in lettuce by using magnetic fluorescent nanoparticles. Anal Methods 2020;12:5861-8. [PMID: 33241794 DOI: 10.1039/d0ay01744b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
50 Peltomaa R, Benito-Peña E, Gorris HH, Moreno-Bondi MC. Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 2021;146:13-32. [PMID: 33205784 DOI: 10.1039/d0an01883j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
51 Deusenbery C, Wang Y, Shukla A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect Dis 2021;7:695-720. [PMID: 33733747 DOI: 10.1021/acsinfecdis.0c00890] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 23.0] [Reference Citation Analysis]
52 Liu R, Zhang Y, Ali S, Haruna SA, He P, Li H, Ouyang Q, Chen Q. Development of a fluorescence aptasensor for rapid and sensitive detection of Listeria monocytogenes in food. Food Control 2021;122:107808. [DOI: 10.1016/j.foodcont.2020.107808] [Cited by in Crossref: 7] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
53 Ouyang Q, Yang Y, Ali S, Wang L, Li H, Chen Q. Upconversion nanoparticles-based FRET system for sensitive detection of Staphylococcus aureus. Spectrochim Acta A Mol Biomol Spectrosc 2021;255:119734. [PMID: 33812237 DOI: 10.1016/j.saa.2021.119734] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
54 Han Q, Zhao X, Na N, Ouyang J. Integrating Near-Infrared Visual Fluorescence with a Photoelectrochemical Sensing System for Dual Readout Detection of Biomolecules. Anal Chem 2021;93:3486-92. [PMID: 33543922 DOI: 10.1021/acs.analchem.0c04802] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
55 Saad M, Faucher SP. Aptamers and Aptamer-Coupled Biosensors to Detect Water-Borne Pathogens. Front Microbiol 2021;12:643797. [PMID: 33679681 DOI: 10.3389/fmicb.2021.643797] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
56 Pereira HS, Tagliaferri TL, Mendes TAO. Enlarging the Toolbox Against Antimicrobial Resistance: Aptamers and CRISPR-Cas. Front Microbiol 2021;12:606360. [PMID: 33679633 DOI: 10.3389/fmicb.2021.606360] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
57 Rong X, Ailing F, Xiaodong L, Jie H, Min L. Monitoring hepatitis B by using point-of-care testing: biomarkers, current technologies, and perspectives. Expert Rev Mol Diagn 2021;21:195-211. [PMID: 33467927 DOI: 10.1080/14737159.2021.1876565] [Reference Citation Analysis]
58 Liu W, Miao L, Li X, Xu Z. Development of fluorescent probes targeting the cell wall of pathogenic bacteria. Coordination Chemistry Reviews 2021;429:213646. [DOI: 10.1016/j.ccr.2020.213646] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
59 Ouyang Q, Wang L, Ahmad W, Rong Y, Li H, Hu Y, Chen Q. A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Food Chem 2021;349:129157. [PMID: 33578248 DOI: 10.1016/j.foodchem.2021.129157] [Cited by in Crossref: 8] [Cited by in F6Publishing: 31] [Article Influence: 8.0] [Reference Citation Analysis]
60 Baig MMFA, Zou T, Neelakantan P, Zhang C. Development and functionalization of DNA nanostructures for biomedical applications. J Chin Chem Soc 2021;68:228-38. [DOI: 10.1002/jccs.202000373] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
61 Arai MS, de Camargo ASS. Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices. Nanoscale Adv 2021;3:5135-65. [DOI: 10.1039/d1na00327e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
62 Si P, Razmi N, Nur O, Solanki S, Pandey CM, Gupta RK, Malhotra BD, Willander M, de la Zerda A. Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv 2021;3:2679-98. [DOI: 10.1039/d0na00961j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
63 Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021;230:122026. [PMID: 33934756 DOI: 10.1016/j.talanta.2020.122026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Qian J, Cui H, Lu X, Wang C, An K, Hao N, Wang K. Bi-color FRET from two nano-donors to a single nano-acceptor: A universal aptasensing platform for simultaneous determination of dual targets. Chemical Engineering Journal 2020;401:126017. [DOI: 10.1016/j.cej.2020.126017] [Cited by in Crossref: 37] [Cited by in F6Publishing: 19] [Article Influence: 18.5] [Reference Citation Analysis]
65 Deng J, Zhao S, Liu Y, Liu C, Sun J. Nanosensors for Diagnosis of Infectious Diseases. ACS Appl Bio Mater 2021;4:3863-79. [DOI: 10.1021/acsabm.0c01247] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Liang G, Wang H, Shi H, Wang H, Zhu M, Jing A, Li J, Li G. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J Nanobiotechnology 2020;18:154. [PMID: 33121496 DOI: 10.1186/s12951-020-00713-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 31] [Article Influence: 2.5] [Reference Citation Analysis]
67 Wang X, Chen X, Song L, Zhou R, Luan S. An enzyme-responsive and photoactivatable carbon-monoxide releasing molecule for bacterial infection theranostics. J Mater Chem B 2020;8:9325-34. [PMID: 32968746 DOI: 10.1039/d0tb01761b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
68 Yi J, Xiao W, Li G, Wu P, He Y, Chen C, He Y, Ding P, Kai T. The research of aptamer biosensor technologies for detection of microorganism. Appl Microbiol Biotechnol 2020;104:9877-90. [PMID: 33047168 DOI: 10.1007/s00253-020-10940-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
69 Wang P, Wang A, Hassan MM, Ouyang Q, Li H, Chen Q. A highly sensitive upconversion nanoparticles-WS2 nanosheet sensing platform for Escherichia coli detection. Sensors and Actuators B: Chemical 2020;320:128434. [DOI: 10.1016/j.snb.2020.128434] [Cited by in Crossref: 12] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
70 Jamal RB, Shipovskov S, Ferapontova EE. Electrochemical Immuno- and Aptamer-Based Assays for Bacteria: Pros and Cons over Traditional Detection Schemes. Sensors (Basel) 2020;20:E5561. [PMID: 32998409 DOI: 10.3390/s20195561] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
71 Yahaya ML, Zakaria ND, Noordin R, Abdul Razak K. Development of rapid gold nanoparticles based lateral flow assays for simultaneous detection of Shigella and Salmonella genera. Biotechnol Appl Biochem 2020. [PMID: 32935878 DOI: 10.1002/bab.2029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
72 Bahari D, Babamiri B, Salimi A, Salimizand H. Ratiometric fluorescence resonance energy transfer aptasensor for highly sensitive and selective detection of Acinetobacter baumannii bacteria in urine sample using carbon dots as optical nanoprobes. Talanta 2021;221:121619. [PMID: 33076147 DOI: 10.1016/j.talanta.2020.121619] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
73 Pu H, Xu Y, Sun DW, Wei Q, Li X. Optical nanosensors for biofilm detection in the food industry: principles, applications and challenges. Crit Rev Food Sci Nutr 2021;61:2107-24. [PMID: 32880470 DOI: 10.1080/10408398.2020.1808877] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
74 Ye Y, Zheng L, Wu T, Ding X, Chen F, Yuan Y, Fan GC, Shen Y. Size-Dependent Modulation of Polydopamine Nanospheres on Smart Nanoprobes for Detection of Pathogenic Bacteria at Single-Cell Level and Imaging-Guided Photothermal Bactericidal Activity. ACS Appl Mater Interfaces 2020;12:35626-37. [PMID: 32657116 DOI: 10.1021/acsami.0c07784] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
75 Trunzo NE, Hong KL. Recent Progress in the Identification of Aptamers Against Bacterial Origins and Their Diagnostic Applications. Int J Mol Sci 2020;21:E5074. [PMID: 32708376 DOI: 10.3390/ijms21145074] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
76 Kumar Kulabhusan P, Hussain B, Yüce M. Current Perspectives on Aptamers as Diagnostic Tools and Therapeutic Agents. Pharmaceutics 2020;12:E646. [PMID: 32659966 DOI: 10.3390/pharmaceutics12070646] [Cited by in Crossref: 23] [Cited by in F6Publishing: 42] [Article Influence: 11.5] [Reference Citation Analysis]
77 Chen Q, Sheng R, Wang P, Ouyang Q, Wang A, Ali S, Zareef M, Hassan MM. Ultra-sensitive detection of malathion residues using FRET-based upconversion fluorescence sensor in food. Spectrochim Acta A Mol Biomol Spectrosc 2020;241:118654. [PMID: 32659702 DOI: 10.1016/j.saa.2020.118654] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
78 Schmitz FRW, Valério A, de Oliveira D, Hotza D. An overview and future prospects on aptamers for food safety. Appl Microbiol Biotechnol 2020;104:6929-39. [PMID: 32588103 DOI: 10.1007/s00253-020-10747-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
79 Rabiee N, Ahmadi S, Arab Z, Bagherzadeh M, Safarkhani M, Nasseri B, Rabiee M, Tahriri M, Webster TJ, Tayebi L. Aptamer Hybrid Nanocomplexes as Targeting Components for Antibiotic/Gene Delivery Systems and Diagnostics: A Review. Int J Nanomedicine 2020;15:4237-56. [PMID: 32606675 DOI: 10.2147/IJN.S248736] [Cited by in Crossref: 10] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
80 Zhang R, Belwal T, Li L, Lin X, Xu Y, Luo Z. Nanomaterial‐based biosensors for sensing key foodborne pathogens: Advances from recent decades. Comprehensive Reviews in Food Science and Food Safety 2020;19:1465-87. [DOI: 10.1111/1541-4337.12576] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 7.5] [Reference Citation Analysis]
81 Dou L, Luo L, Zhang X, Zhang W, Liu L, Yin X, Liu S, Sun J, Zhang D, Wang J. Biomimetic cell model for fluorometric and smartphone colorimetric dual-signal readout detection of bacterial toxin. Sensors and Actuators B: Chemical 2020;312:127956. [DOI: 10.1016/j.snb.2020.127956] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
82 Shah AI, Din Dar MU, Bhat RA, Singh J, Singh K, Bhat SA. Prospectives and challenges of wastewater treatment technologies to combat contaminants of emerging concerns. Ecological Engineering 2020;152:105882. [DOI: 10.1016/j.ecoleng.2020.105882] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 9.5] [Reference Citation Analysis]
83 Esmaelpourfarkhani M, Abnous K, Taghdisi SM, Chamsaz M. A novel turn-off fluorescent aptasensor for ampicillin detection based on perylenetetracarboxylic acid diimide and gold nanoparticles. Biosens Bioelectron 2020;164:112329. [PMID: 32553354 DOI: 10.1016/j.bios.2020.112329] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
84 Soukarié D, Ecochard V, Salomé L. DNA-based nanobiosensors for monitoring of water quality. International Journal of Hygiene and Environmental Health 2020;226:113485. [DOI: 10.1016/j.ijheh.2020.113485] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
85 Zhou J, Chen J, Ge Y, Shao Y. Two-dimensional nanomaterials for Förster resonance energy transfer–based sensing applications. Nanophotonics 2020;9:1855-75. [DOI: 10.1515/nanoph-2020-0065] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
86 Du H, Li Z, Wang Y, Yang Q, Wu W. Nanomaterial-based Optical Biosensors for the Detection of Foodborne Bacteria. Food Reviews International. [DOI: 10.1080/87559129.2020.1740733] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
87 Khoshbin Z, Housaindokht MR, Verdian A. A low-cost paper-based aptasensor for simultaneous trace-level monitoring of mercury (II) and silver (I) ions. Anal Biochem 2020;597:113689. [PMID: 32199832 DOI: 10.1016/j.ab.2020.113689] [Cited by in Crossref: 15] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
88 Ge H, Wang D, Pan Y, Guo Y, Li H, Zhang F, Zhu X, Li Y, Zhang C, Huang L. Sequence‐Dependent DNA Functionalization of Upconversion Nanoparticles and Their Programmable Assemblies. Angew Chem 2020;132:8210-4. [DOI: 10.1002/ange.202000831] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
89 Ge H, Wang D, Pan Y, Guo Y, Li H, Zhang F, Zhu X, Li Y, Zhang C, Huang L. Sequence‐Dependent DNA Functionalization of Upconversion Nanoparticles and Their Programmable Assemblies. Angew Chem Int Ed 2020;59:8133-7. [DOI: 10.1002/anie.202000831] [Cited by in Crossref: 13] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
90 Mcconnell EM, Morrison D, Rey Rincon MA, Salena BJ, Li Y. Selection and applications of synthetic functional DNAs for bacterial detection. TrAC Trends in Analytical Chemistry 2020;124:115785. [DOI: 10.1016/j.trac.2019.115785] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 7.5] [Reference Citation Analysis]
91 Yin M, Jing C, Li H, Deng Q, Wang S. Surface chemistry modified upconversion nanoparticles as fluorescent sensor array for discrimination of foodborne pathogenic bacteria. J Nanobiotechnology 2020;18:41. [PMID: 32111217 DOI: 10.1186/s12951-020-00596-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
92 Liu Z, Shang C, Ma H, You M. An upconversion nanoparticle-based photostable FRET system for long-chain DNA sequence detection. Nanotechnology 2020;31:235501. [PMID: 32069442 DOI: 10.1088/1361-6528/ab776d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
93 Cui F, Ye Y, Ping J, Sun X. Carbon dots: Current advances in pathogenic bacteria monitoring and prospect applications. Biosens Bioelectron 2020;156:112085. [PMID: 32275580 DOI: 10.1016/j.bios.2020.112085] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 15.0] [Reference Citation Analysis]
94 Yao J, Huang C, Liu C, Yang M. Upconversion luminescence nanomaterials: A versatile platform for imaging, sensing, and therapy. Talanta 2020;208:120157. [DOI: 10.1016/j.talanta.2019.120157] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 8.5] [Reference Citation Analysis]
95 Kang D, Lee S, Shin H, Pyun J, Lee J. An efficient NIR-to-NIR signal-based LRET system for homogeneous competitive immunoassay. Biosensors and Bioelectronics 2020;150:111921. [DOI: 10.1016/j.bios.2019.111921] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
96 Amouzadeh Tabrizi M, Ferré-borrull J, Marsal LF. Remote sensing of Salmonella-specific DNA fragment by using nanoporous alumina modified with the single-strand DNA probe. Sensors and Actuators B: Chemical 2020;304:127302. [DOI: 10.1016/j.snb.2019.127302] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
97 Gutiérrez-Santana JC, Toscano-Garibay JD, López-López M, Coria-Jiménez VR. Aptamers coupled to nanoparticles in the diagnosis and treatment of microbial infections. Enferm Infecc Microbiol Clin (Engl Ed) 2020;38:331-7. [PMID: 31948707 DOI: 10.1016/j.eimc.2019.12.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
98 Sun L, Wang T, Sun Y, Li Z, Song H, Zhang B, Zhou G, Zhou H, Hu J. Fluorescence resonance energy transfer between NH2–NaYF4:Yb,Er/NaYF4@SiO2 upconversion nanoparticles and gold nanoparticles for the detection of glutathione and cadmium ions. Talanta 2020;207:120294. [DOI: 10.1016/j.talanta.2019.120294] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
99 Sondhi P, Maruf MHU, Stine KJ. Nanomaterials for Biosensing Lipopolysaccharide. Biosensors (Basel) 2019;10:E2. [PMID: 31877825 DOI: 10.3390/bios10010002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
100 Sharifi S, Vahed SZ, Ahmadian E, Dizaj SM, Eftekhari A, Khalilov R, Ahmadi M, Hamidi-Asl E, Labib M. Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens Bioelectron 2020;150:111933. [PMID: 31818764 DOI: 10.1016/j.bios.2019.111933] [Cited by in Crossref: 35] [Cited by in F6Publishing: 22] [Article Influence: 11.7] [Reference Citation Analysis]
101 Cui F, Sun J, de Dieu Habimana J, Yang X, Ji J, Zhang Y, Lei H, Li Z, Zheng J, Fan M, Sun X. Ultrasensitive Fluorometric Angling Determination of Staphylococcus aureus in Vitro and Fluorescence Imaging in Vivo Using Carbon Dots with Full-Color Emission. Anal Chem 2019;91:14681-90. [PMID: 31617347 DOI: 10.1021/acs.analchem.9b03916] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
102 Yin M, Zhang C, Li J, Li H, Deng Q, Wang S. Highly Sensitive Detection of Benzoyl Peroxide Based on Organoboron Fluorescent Conjugated Polymers. Polymers (Basel) 2019;11:E1655. [PMID: 31614619 DOI: 10.3390/polym11101655] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
103 Dong R, Li Y, Li W, Zhang H, Liu Y, Ma L, Wang X, Lei B. Recent developments in luminescent nanoparticles for plant imaging and photosynthesis. Journal of Rare Earths 2019;37:903-15. [DOI: 10.1016/j.jre.2019.04.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
104 Gorski L, Rivadeneira P, Cooley MB. New strategies for the enumeration of enteric pathogens in water. Environ Microbiol Rep 2019;11:765-76. [PMID: 31342654 DOI: 10.1111/1758-2229.12786] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
105 Poláchová V, Pastucha M, Mikušová Z, Mickert MJ, Hlaváček A, Gorris HH, Skládal P, Farka Z. Click-conjugated photon-upconversion nanoparticles in an immunoassay for honeybee pathogen Melissococcus plutonius. Nanoscale 2019;11:8343-51. [PMID: 30984949 DOI: 10.1039/c9nr01246j] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
106 Kim SH, Thoa TTT, Gu MB. Aptasensors for environmental monitoring of contaminants in water and soil. Current Opinion in Environmental Science & Health 2019;10:9-21. [DOI: 10.1016/j.coesh.2019.09.003] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
107 Pehlivan ZS, Torabfam M, Kurt H, Ow-Yang C, Hildebrandt N, Yüce M. Aptamer and nanomaterial based FRET biosensors: a review on recent advances (2014-2019). Mikrochim Acta 2019;186:563. [PMID: 31338623 DOI: 10.1007/s00604-019-3659-3] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 13.7] [Reference Citation Analysis]
108 Tian H, Duan N, Wu S, Wang Z. Selection and application of ssDNA aptamers against spermine based on Capture-SELEX. Anal Chim Acta 2019;1081:168-75. [PMID: 31446954 DOI: 10.1016/j.aca.2019.07.031] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
109 Sun L, Zhou H, Huang D, Wang T, Gao P, Sun Y, Zhou G, Hu J. Fluorometric determination of antioxidant capacity in human plasma by using upconversion nanoparticles and an inner filter effect mechanism. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3627-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
110 Liu L, Yang D, Liu G. Signal amplification strategies for paper-based analytical devices. Biosensors and Bioelectronics 2019;136:60-75. [DOI: 10.1016/j.bios.2019.04.043] [Cited by in Crossref: 65] [Cited by in F6Publishing: 51] [Article Influence: 21.7] [Reference Citation Analysis]
111 Yin M, Wu C, Li H, Jia Z, Deng Q, Wang S, Zhang Y. Simultaneous Sensing of Seven Pathogenic Bacteria by Guanidine-Functionalized Upconversion Fluorescent Nanoparticles. ACS Omega 2019;4:8953-9. [PMID: 31459983 DOI: 10.1021/acsomega.9b00775] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
112 Khoshbin Z, Housaindokht MR, Izadyar M, Verdian A, Bozorgmehr MR. A simple paper-based aptasensor for ultrasensitive detection of lead (II) ion. Anal Chim Acta 2019;1071:70-7. [PMID: 31128757 DOI: 10.1016/j.aca.2019.04.049] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
113 Gong C, Sun S, Zhang Y, Sun L, Su Z, Wu A, Wei G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. Nanoscale 2019;11:4147-82. [PMID: 30806426 DOI: 10.1039/c9nr00218a] [Cited by in Crossref: 68] [Cited by in F6Publishing: 66] [Article Influence: 22.7] [Reference Citation Analysis]
114 Zhao Q, Zhou C, Yang Q, Chu Z, Jia N. A FRET-based fluorescent probe for hydrogen peroxide based on the use of carbon quantum dots conjugated to gold nanoclusters. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3398-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
115 Bhardwaj N, Bhardwaj SK, Bhatt D, Lim DK, Kim K, Deep A. Optical detection of waterborne pathogens using nanomaterials. TrAC Trends in Analytical Chemistry 2019;113:280-300. [DOI: 10.1016/j.trac.2019.02.019] [Cited by in Crossref: 30] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
116 Shafiei M, Ghasemian A, Mostafavi SK, Teimouri M, Vardanjani HR, Mirforughi SA. Gold nanoparticle-based colorimetric platform technology as rapid and efficient bacterial pathogens detection method from various sources. Reviews in Medical Microbiology 2019;30:128-32. [DOI: 10.1097/mrm.0000000000000160] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
117 Singh R, Dumlupinar G, Andersson-Engels S, Melgar S. Emerging applications of upconverting nanoparticles in intestinal infection and colorectal cancer. Int J Nanomedicine 2019;14:1027-38. [PMID: 30799920 DOI: 10.2147/IJN.S188887] [Cited by in Crossref: 20] [Cited by in F6Publishing: 26] [Article Influence: 6.7] [Reference Citation Analysis]
118 Tian J. Aptamer-based colorimetric detection of various targets based on catalytic Au NPs/Graphene nanohybrids. Sensing and Bio-Sensing Research 2019;22:100258. [DOI: 10.1016/j.sbsr.2019.100258] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
119 Van Giau V, An SSA, Hulme J. Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles. Drug Des Devel Ther 2019;13:327-43. [PMID: 30705582 DOI: 10.2147/DDDT.S190577] [Cited by in Crossref: 45] [Cited by in F6Publishing: 51] [Article Influence: 15.0] [Reference Citation Analysis]
120 Karimi MA, Dadmehr M, Hosseini M, Korouzhdehi B, Oroojalian F. Sensitive detection of methylated DNA and methyltransferase activity based on the lighting up of FAM-labeled DNA quenched fluorescence by gold nanoparticles. RSC Adv 2019;9:12063-9. [DOI: 10.1039/c9ra01564g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
121 Kumar N, Hu Y, Singh S, Mizaikoff B. Emerging biosensor platforms for the assessment of water-borne pathogens. Analyst 2018;143:359-73. [PMID: 29271425 DOI: 10.1039/c7an00983f] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 10.3] [Reference Citation Analysis]
122 Lee KJ, Lee WS, Hwang A, Moon J, Kang T, Park K, Jeong J. Simple and rapid detection of bacteria using a nuclease-responsive DNA probe. Analyst 2017;143:332-8. [PMID: 29210381 DOI: 10.1039/c7an01384a] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
123 Sergelen K, Liedberg B, Knoll W, Dostálek J. A surface plasmon field-enhanced fluorescence reversible split aptamer biosensor. Analyst 2017;142:2995-3001. [PMID: 28744534 DOI: 10.1039/c7an00970d] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
124 Fang X, Zheng Y, Duan Y, Liu Y, Zhong W. Recent Advances in Design of Fluorescence-Based Assays for High-Throughput Screening. Anal Chem 2019;91:482-504. [PMID: 30481456 DOI: 10.1021/acs.analchem.8b05303] [Cited by in Crossref: 36] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
125 Jin B, Yang Y, He R, Park YI, Lee A, Bai D, Li F, Lu TJ, Xu F, Lin M. Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles. Sensors and Actuators B: Chemical 2018;276:48-56. [DOI: 10.1016/j.snb.2018.08.074] [Cited by in Crossref: 49] [Cited by in F6Publishing: 24] [Article Influence: 12.3] [Reference Citation Analysis]
126 Hermann CA, Duerkop A, Baeumner AJ. Food Safety Analysis Enabled through Biological and Synthetic Materials: A Critical Review of Current Trends. Anal Chem 2019;91:569-87. [PMID: 30346696 DOI: 10.1021/acs.analchem.8b04598] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
127 Whang K, Lee JH, Shin Y, Lee W, Kim YW, Kim D, Lee LP, Kang T. Plasmonic bacteria on a nanoporous mirror via hydrodynamic trapping for rapid identification of waterborne pathogens. Light Sci Appl 2018;7:68. [PMID: 30302239 DOI: 10.1038/s41377-018-0071-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
128 Majdinasab M, Hayat A, Marty JL. Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. TrAC Trends in Analytical Chemistry 2018;107:60-77. [DOI: 10.1016/j.trac.2018.07.016] [Cited by in Crossref: 87] [Cited by in F6Publishing: 46] [Article Influence: 21.8] [Reference Citation Analysis]
129 Su J, Xiang X, Lv R, Li H, Fu X, Yang B, Gu W, Liu X. Rapid and high-selectivity detection of rifampicin based on upconversion luminescence core-shell structure composites. Journal of Solid State Chemistry 2018;266:9-15. [DOI: 10.1016/j.jssc.2018.05.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
130 Zhang Z, Shikha S, Liu J, Zhang J, Mei Q, Zhang Y. Upconversion Nanoprobes: Recent Advances in Sensing Applications. Anal Chem 2019;91:548-68. [DOI: 10.1021/acs.analchem.8b04049] [Cited by in Crossref: 93] [Cited by in F6Publishing: 66] [Article Influence: 23.3] [Reference Citation Analysis]
131 Khoshbin Z, Verdian A, Housaindokht MR, Izadyar M, Rouhbakhsh Z. Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection. Biosens Bioelectron 2018;122:263-83. [PMID: 30268964 DOI: 10.1016/j.bios.2018.09.060] [Cited by in Crossref: 56] [Cited by in F6Publishing: 77] [Article Influence: 14.0] [Reference Citation Analysis]
132 Wang L, Wang R, Wei H, Li Y. Selection of aptamers against pathogenic bacteria and their diagnostics application. World J Microbiol Biotechnol 2018;34:149. [PMID: 30220026 DOI: 10.1007/s11274-018-2528-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
133 Liu X, Liu M, Chen J, Li Z, Yuan Q. Rational design and biomedical applications of DNA-functionalized upconversion nanoparticles. Chinese Chemical Letters 2018;29:1321-32. [DOI: 10.1016/j.cclet.2018.03.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
134 Bayramoglu G, Ozalp C, Oztekin M, Guler U, Salih B, Arica MY. Design of an aptamer-based magnetic adsorbent and biosensor systems for selective and sensitive separation and detection of thrombin. Talanta 2019;191:59-66. [PMID: 30262099 DOI: 10.1016/j.talanta.2018.08.048] [Cited by in Crossref: 30] [Cited by in F6Publishing: 37] [Article Influence: 7.5] [Reference Citation Analysis]
135 Zhou J, Leaño JL Jr, Liu Z, Jin D, Wong KL, Liu RS, Bünzli JG. Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. Small 2018;14:e1801882. [PMID: 30066496 DOI: 10.1002/smll.201801882] [Cited by in Crossref: 70] [Cited by in F6Publishing: 80] [Article Influence: 17.5] [Reference Citation Analysis]
136 Lingeshwar Reddy K, Balaji R, Kumar A, Krishnan V. Lanthanide Doped Near Infrared Active Upconversion Nanophosphors: Fundamental Concepts, Synthesis Strategies, and Technological Applications. Small 2018;14:1801304. [DOI: 10.1002/smll.201801304] [Cited by in Crossref: 40] [Cited by in F6Publishing: 48] [Article Influence: 10.0] [Reference Citation Analysis]
137 Zhong Z, Gao X, Gao R, Jia L. Selective capture and sensitive fluorometric determination of Pseudomonas aeruginosa by using aptamer modified magnetic nanoparticles. Mikrochim Acta 2018;185:377. [PMID: 30014163 DOI: 10.1007/s00604-018-2914-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
138 Khoshbin Z, Housaindokht MR, Verdian A, Bozorgmehr MR. Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors. Biosens Bioelectron 2018;116:130-47. [PMID: 29879539 DOI: 10.1016/j.bios.2018.05.051] [Cited by in Crossref: 60] [Cited by in F6Publishing: 71] [Article Influence: 15.0] [Reference Citation Analysis]
139 Habimana JDD, Ji J, Sun X. Minireview: Trends in Optical-Based Biosensors for Point-Of-Care Bacterial Pathogen Detection for Food Safety and Clinical Diagnostics. Analytical Letters 2018;51:2933-66. [DOI: 10.1080/00032719.2018.1458104] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
140 Pan Q, Luo F, Liu M, Zhang XL. Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases. J Infect 2018;77:83-98. [PMID: 29746951 DOI: 10.1016/j.jinf.2018.04.007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
141 Park K, Park M, Jang HS, Park JH, Kim J, Cho Y, Han IK, Byun D, Ko H. Highly Secure Plasmonic Encryption Keys Combined with Upconversion Luminescence Nanocrystals. Adv Funct Mater 2018;28:1800369. [DOI: 10.1002/adfm.201800369] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
142 Sun Y, Fang L, Wan Y, Gu Z. Pathogenic detection and phenotype using magnetic nanoparticle-urease nanosensor. Sensors and Actuators B: Chemical 2018;259:428-32. [DOI: 10.1016/j.snb.2017.12.095] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 4.8] [Reference Citation Analysis]
143 Shu B, Li Z, Yang X, Xiao F, Lin D, Lei X, Xu B, Liu D. Active droplet-array (ADA) microfluidics enables multiplexed complex bioassays for point of care testing. Chem Commun (Camb) 2018;54:2232-5. [PMID: 29431774 DOI: 10.1039/c7cc09377b] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
144 Abnous K, Danesh NM, Ramezani M, Taghdisi SM, Emrani AS. A novel colorimetric aptasensor for ultrasensitive detection of cocaine based on the formation of three-way junction pockets on the surfaces of gold nanoparticles. Anal Chim Acta 2018;1020:110-5. [PMID: 29655421 DOI: 10.1016/j.aca.2018.02.066] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
145 Reddy KL, Venkateswarulu M, Shankar KR, Ghosh S, Krishnan V. Upconversion Luminescent Material-Based Inorganic-Organic Hybrid Sensing System for the Selective Detection of Hydrazine in Environmental Samples. ChemistrySelect 2018;3:1793-800. [DOI: 10.1002/slct.201702666] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
146 Sadeghi AS, Mohsenzadeh M, Abnous K, Taghdisi SM, Ramezani M. Development and characterization of DNA aptamers against florfenicol: Fabrication of a sensitive fluorescent aptasensor for specific detection of florfenicol in milk. Talanta 2018;182:193-201. [PMID: 29501140 DOI: 10.1016/j.talanta.2018.01.083] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
147 Si F, Zou R, Jiao S, Qiao X, Guo Y, Zhu G. Inner filter effect-based homogeneous immunoassay for rapid detection of imidacloprid residue in environmental and food samples. Ecotoxicology and Environmental Safety 2018;148:862-8. [DOI: 10.1016/j.ecoenv.2017.11.062] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
148 Xie S, Tong C, Tan H, Li N, Gong L, Xu J, Xu L, Zhang C. Hydrothermal synthesis and inkjet printing of hexagonal-phase NaYF 4 : Ln 3+ upconversion hollow microtubes for smart anti-counterfeiting encryption. Mater Chem Front 2018;2:1997-2005. [DOI: 10.1039/c8qm00278a] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 11.0] [Reference Citation Analysis]
149 Chen X, Lan J, Liu Y, Li L, Yan L, Xia Y, Wu F, Li C, Li S, Chen J. A paper-supported aptasensor based on upconversion luminescence resonance energy transfer for the accessible determination of exosomes. Biosens Bioelectron 2018;102:582-8. [PMID: 29241062 DOI: 10.1016/j.bios.2017.12.012] [Cited by in Crossref: 77] [Cited by in F6Publishing: 85] [Article Influence: 15.4] [Reference Citation Analysis]
150 Guo L, Hu Y, Zhang Z, Tang Y. Universal fluorometric aptasensor platform based on water-soluble conjugated polymers/graphene oxide. Anal Bioanal Chem 2018;410:287-95. [DOI: 10.1007/s00216-017-0720-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
151 Lee SY, Lin M, Lee A, Park YI. Lanthanide-Doped Nanoparticles for Diagnostic Sensing. Nanomaterials (Basel) 2017;7:E411. [PMID: 29168770 DOI: 10.3390/nano7120411] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
152 Liu HB, Du XJ, Zang YX, Li P, Wang S. SERS-Based Lateral Flow Strip Biosensor for Simultaneous Detection of Listeria monocytogenes and Salmonella enterica Serotype Enteritidis. J Agric Food Chem 2017;65:10290-9. [PMID: 29095602 DOI: 10.1021/acs.jafc.7b03957] [Cited by in Crossref: 74] [Cited by in F6Publishing: 63] [Article Influence: 14.8] [Reference Citation Analysis]
153 Bhuckory S, Hemmer E, Wu Y, Yahia-ammar A, Vetrone F, Hildebrandt N. Core or Shell? Er 3+ FRET Donors in Upconversion Nanoparticles: Core or Shell? Er 3+ FRET Donors in Upconversion Nanoparticles. Eur J Inorg Chem 2017;2017:5186-95. [DOI: 10.1002/ejic.201700904] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
154 Wu Z, Xu E, Chughtai MF, Jin Z, Irudayaraj J. Highly sensitive fluorescence sensing of zearalenone using a novel aptasensor based on upconverting nanoparticles. Food Chemistry 2017;230:673-80. [DOI: 10.1016/j.foodchem.2017.03.100] [Cited by in Crossref: 59] [Cited by in F6Publishing: 65] [Article Influence: 11.8] [Reference Citation Analysis]
155 Verdian A. Apta-nanosensors for detection and quantitative determination of acetamiprid - A pesticide residue in food and environment. Talanta 2018;176:456-64. [PMID: 28917776 DOI: 10.1016/j.talanta.2017.08.070] [Cited by in Crossref: 66] [Cited by in F6Publishing: 49] [Article Influence: 13.2] [Reference Citation Analysis]
156 Mocan T, Matea CT, Pop T, Mosteanu O, Buzoianu AD, Puia C, Iancu C, Mocan L. Development of nanoparticle-based optical sensors for pathogenic bacterial detection. J Nanobiotechnology 2017;15:25. [PMID: 28359284 DOI: 10.1186/s12951-017-0260-y] [Cited by in Crossref: 66] [Cited by in F6Publishing: 66] [Article Influence: 13.2] [Reference Citation Analysis]
157 Yüce M, Kurt H. How to make nanobiosensors: surface modification and characterisation of nanomaterials for biosensing applications. RSC Adv 2017;7:49386-403. [DOI: 10.1039/c7ra10479k] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 9.6] [Reference Citation Analysis]