BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hickey DP, Reid RC, Milton RD, Minteer SD. A self-powered amperometric lactate biosensor based on lactate oxidase immobilized in dimethylferrocene-modified LPEI. Biosens Bioelectron 2016;77:26-31. [PMID: 26385734 DOI: 10.1016/j.bios.2015.09.013] [Cited by in Crossref: 105] [Cited by in F6Publishing: 83] [Article Influence: 15.0] [Reference Citation Analysis]
Number Citing Articles
1 Kim K, Kim H, Jang H, Park J, Jung G, Kim M. Self-Powered Biosensors Using Various Light Sources in Daily Life Environments: Integration of p–n Heterojunction Photodetectors and Colorimetric Reactions for Biomolecule Detection. ACS Appl Mater Interfaces 2018;10:39487-93. [DOI: 10.1021/acsami.8b13457] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
2 Chen Y, Ji W, Yan K, Gao J, Zhang J. Fuel cell-based self-powered electrochemical sensors for biochemical detection. Nano Energy 2019;61:173-93. [DOI: 10.1016/j.nanoen.2019.04.056] [Cited by in Crossref: 57] [Cited by in F6Publishing: 28] [Article Influence: 19.0] [Reference Citation Analysis]
3 Zhang Z, Kwok RTK, Yu Y, Tang BZ, Ng KM. Sensitive and Specific Detection of l-Lactate Using an AIE-Active Fluorophore. ACS Appl Mater Interfaces 2017;9:38153-8. [PMID: 29048871 DOI: 10.1021/acsami.7b10178] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
4 Liu H, Yan X, Gu Z, Xiu G, Xiao X. Electrochemical Sensing in Contact Lenses. Electroanalysis 2022;34:227-36. [DOI: 10.1002/elan.202100342] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Carvalho WSP, Wei M, Ikpo N, Gao Y, Serpe MJ. Polymer-Based Technologies for Sensing Applications. Anal Chem 2017;90:459-79. [DOI: 10.1021/acs.analchem.7b04751] [Cited by in Crossref: 28] [Cited by in F6Publishing: 16] [Article Influence: 5.6] [Reference Citation Analysis]
6 Escalona-villalpando RA, Reid RC, Milton RD, Arriaga L, Minteer SD, Ledesma-garcía J. Improving the performance of lactate/oxygen biofuel cells using a microfluidic design. Journal of Power Sources 2017;342:546-52. [DOI: 10.1016/j.jpowsour.2016.12.082] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
7 Reid RC, Jones SR, Hickey DP, Minteer SD, Gale BK. Modeling Carbon Nanotube Connectivity and Surface Activity in a Contact Lens Biofuel Cell. Electrochimica Acta 2016;203:30-40. [DOI: 10.1016/j.electacta.2016.04.012] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 4.2] [Reference Citation Analysis]
8 Bravo I, Revenga-parra M, Weber K, Popp J, Pariente F, Lorenzo E. One-step reduced/quinone functionalized graphene oxide as reagentless lactate biosensing platform. Sensors and Actuators B: Chemical 2018;267:533-41. [DOI: 10.1016/j.snb.2018.03.170] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Alkotaini B, Abdellaoui S, Hasan K, Grattieri M, Quah T, Cai R, Yuan M, Minteer SD. Sustainable Bioelectrosynthesis of the Bioplastic Polyhydroxybutyrate: Overcoming Substrate Requirement for NADH Regeneration. ACS Sustainable Chem Eng 2018;6:4909-15. [DOI: 10.1021/acssuschemeng.7b04392] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
10 Yin S, Liu X, Kaji T, Nishina Y, Miyake T. Fiber-crafted biofuel cell bracelet for wearable electronics. Biosens Bioelectron 2021;179:113107. [PMID: 33640657 DOI: 10.1016/j.bios.2021.113107] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
11 Bravo I, Gutiérrez-Sánchez C, García-Mendiola T, Revenga-Parra M, Pariente F, Lorenzo E. Enhanced Performance of Reagent-Less Carbon Nanodots Based Enzyme Electrochemical Biosensors. Sensors (Basel) 2019;19:E5576. [PMID: 31861148 DOI: 10.3390/s19245576] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
12 Karpova EV, Laptev AI, Andreev EA, Karyakina EE, Karyakin AA. Relationship Between Sweat and Blood Lactate Levels During Exhaustive Physical Exercise. ChemElectroChem 2019;7:191-4. [DOI: 10.1002/celc.201901703] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 10.5] [Reference Citation Analysis]
13 Pinyou P, Blay V, Muresan LM, Noguer T. Enzyme-modified electrodes for biosensors and biofuel cells. Mater Horiz 2019;6:1336-58. [DOI: 10.1039/c9mh00013e] [Cited by in Crossref: 44] [Article Influence: 14.7] [Reference Citation Analysis]
14 Bollella P, Sharma S, Cass AEG, Antiochia R. Microneedle-based biosensor for minimally-invasive lactate detection. Biosensors and Bioelectronics 2019;123:152-9. [DOI: 10.1016/j.bios.2018.08.010] [Cited by in Crossref: 72] [Cited by in F6Publishing: 48] [Article Influence: 24.0] [Reference Citation Analysis]
15 Koushanpour A, Gamella M, Katz E. A Biofuel Cell Based on Biocatalytic Reactions of Lactate on Both Anode and Cathode Electrodes – Extracting Electrical Power from Human Sweat. Electroanalysis 2017;29:1602-11. [DOI: 10.1002/elan.201700126] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
16 Komkova MA, Karyakina EE, Karyakin AA. Noiseless Performance of Prussian Blue Based (Bio)sensors through Power Generation. Anal Chem 2017;89:6290-4. [DOI: 10.1021/acs.analchem.7b01142] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
17 Milton RD, Wang T, Knoche KL, Minteer SD. Tailoring Biointerfaces for Electrocatalysis. Langmuir 2016;32:2291-301. [DOI: 10.1021/acs.langmuir.5b04742] [Cited by in Crossref: 46] [Cited by in F6Publishing: 34] [Article Influence: 7.7] [Reference Citation Analysis]
18 Alba-Patiño A, Vaquer A, Barón E, Russell SM, Borges M, de la Rica R. Micro- and nanosensors for detecting blood pathogens and biomarkers at different points of sepsis care. Mikrochim Acta 2022;189:74. [PMID: 35080669 DOI: 10.1007/s00604-022-05171-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
19 Shitanda I, Morigayama Y, Iwashita R, Goto H, Aikawa T, Mikawa T, Hoshi Y, Itagaki M, Matsui H, Tokito S, Tsujimura S. Paper-based lactate biofuel cell array with high power output. Journal of Power Sources 2021;489:229533. [DOI: 10.1016/j.jpowsour.2021.229533] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
20 Ohnuki H, Wako T, Mecheri B, Wu H, Tsuya D, Endo H. Self-powered hydrogen peroxide sensor and its application as a biosensor. Jpn J Appl Phys 2019;58:SBBG16. [DOI: 10.7567/1347-4065/ab01d2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
21 Shitanda I, Takamatsu K, Niiyama A, Mikawa T, Hoshi Y, Itagaki M, Tsujimura S. High-power lactate/O2 enzymatic biofuel cell based on carbon cloth electrodes modified with MgO-templated carbon. Journal of Power Sources 2019;436:226844. [DOI: 10.1016/j.jpowsour.2019.226844] [Cited by in Crossref: 32] [Cited by in F6Publishing: 12] [Article Influence: 10.7] [Reference Citation Analysis]
22 Raza W, Ali F, Raza N, Luo Y, Kim K, Yang J, Kumar S, Mehmood A, Kwon EE. Recent advancements in supercapacitor technology. Nano Energy 2018;52:441-73. [DOI: 10.1016/j.nanoen.2018.08.013] [Cited by in Crossref: 519] [Cited by in F6Publishing: 162] [Article Influence: 129.8] [Reference Citation Analysis]
23 Wang L, Shao H, Lu X, Wang W, Zhang JR, Song RB, Zhu JJ. A glucose/O2 fuel cell-based self-powered biosensor for probing a drug delivery model with self-diagnosis and self-evaluation. Chem Sci 2018;9:8482-91. [PMID: 30568772 DOI: 10.1039/c8sc04019b] [Cited by in Crossref: 23] [Cited by in F6Publishing: 1] [Article Influence: 5.8] [Reference Citation Analysis]
24 Jannu C, Noé A, Bibiana C. Bioelectrocatalysis for Biofuel Cells. In: Inamuddin, Ahamed MI, Boddula R, Rezakazemi M, editors. Biofuel Cells. Wiley; 2021. pp. 1-52. [DOI: 10.1002/9781119725008.ch1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Yuan M, Minteer SD. Redox polymers in electrochemical systems: From methods of mediation to energy storage. Current Opinion in Electrochemistry 2019;15:1-6. [DOI: 10.1016/j.coelec.2019.03.003] [Cited by in Crossref: 46] [Cited by in F6Publishing: 23] [Article Influence: 15.3] [Reference Citation Analysis]
26 Shitanda I, Momiyama M, Watanabe N, Tanaka T, Tsujimura S, Hoshi Y, Itagaki M. Toward Wearable Energy Storage Devices: Paper-Based Biofuel Cells based on a Screen-Printing Array Structure. ChemElectroChem 2017;4:2460-3. [PMID: 29214125 DOI: 10.1002/celc.201700561] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
27 Hickey DP. Ferrocene-Modified Linear Poly(ethylenimine) for Enzymatic Immobilization and Electron Mediation. Methods Mol Biol 2017;1504:181-91. [PMID: 27770422 DOI: 10.1007/978-1-4939-6499-4_14] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
28 Le Goff A, Holzinger M. Molecular engineering of the bio/nano-interface for enzymatic electrocatalysis in fuel cells. Sustainable Energy Fuels 2018;2:2555-66. [DOI: 10.1039/c8se00374b] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
29 Alshammari A, Posner MG, Upadhyay A, Marken F, Bagby S, Ilie A. A Modular Bioplatform Based on a Versatile Supramolecular Multienzyme Complex Directly Attached to Graphene. ACS Appl Mater Interfaces 2016;8:21077-88. [PMID: 27447357 DOI: 10.1021/acsami.6b05453] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
30 Wang L, Wu X, Su BSQ, Song R, Zhang J, Zhu J. Enzymatic Biofuel Cell: Opportunities and Intrinsic Challenges in Futuristic Applications. Adv Energy Sustain Res 2021;2:2100031. [DOI: 10.1002/aesr.202100031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
31 Conzuelo F, Ruff A, Schuhmann W. Self-powered bioelectrochemical devices. Current Opinion in Electrochemistry 2018;12:156-63. [DOI: 10.1016/j.coelec.2018.05.010] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
32 Grattieri M, Hickey DP, Kim HS, Seijas VT, Kim J, Minteer SD. Lag Time Spectrophotometric Assay for Studying Transport Limitation in Immobilized Enzymes. ACS Omega 2018;3:11945-9. [PMID: 30320281 DOI: 10.1021/acsomega.8b01527] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
33 Jaworska E, Michalska A, Maksymiuk K. Self-Powered Cascade Bipolar Electrodes with Fluorimetric Readout. Anal Chem 2019;91:15525-31. [DOI: 10.1021/acs.analchem.9b03405] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
34 Alam F, Roychoudhury S, Jalal AH, Umasankar Y, Forouzanfar S, Akter N, Bhansali S, Pala N. Lactate biosensing: The emerging point-of-care and personal health monitoring. Biosensors and Bioelectronics 2018;117:818-29. [DOI: 10.1016/j.bios.2018.06.054] [Cited by in Crossref: 48] [Cited by in F6Publishing: 31] [Article Influence: 12.0] [Reference Citation Analysis]
35 Smith SK, Gosrani SP, Lee CA, Mccarty GS, Sombers LA. Carbon-Fiber Microbiosensor for Monitoring Rapid Lactate Fluctuations in Brain Tissue Using Fast-Scan Cyclic Voltammetry. Anal Chem 2018;90:12994-9. [DOI: 10.1021/acs.analchem.8b03694] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
36 Zhang Z, Zhang X, Fung KY, Ng KM. Product Design: Enzymatic Biosensors for Body Fluid Analysis. Ind Eng Chem Res 2019;58:14284-94. [DOI: 10.1021/acs.iecr.9b02849] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
37 Ali F, Liu X, Zhou D, Yang X, Xu J, Schenk T, Müller J, Schroeder U, Cao F, Dong X. Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage. Journal of Applied Physics 2017;122:144105. [DOI: 10.1063/1.4989908] [Cited by in Crossref: 49] [Cited by in F6Publishing: 13] [Article Influence: 9.8] [Reference Citation Analysis]
38 Li L, Peng J, Chu Z, Jiang D, Jin W. Single layer of graphene/Prussian blue nano-grid as the low-potential biosensors with high electrocatalysis. Electrochimica Acta 2016;217:210-7. [DOI: 10.1016/j.electacta.2016.09.081] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
39 Wiraja C, Ning X, Cui M, Xu C. Hydrogel-Based Technologies for the Diagnosis of Skin Pathology. Technologies 2020;8:47. [DOI: 10.3390/technologies8030047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
40 Gross AJ, Chen X, Giroud F, Abreu C, Le Goff A, Holzinger M, Cosnier S. A High Power Buckypaper Biofuel Cell: Exploiting 1,10-Phenanthroline-5,6-dione with FAD-Dependent Dehydrogenase for Catalytically-Powerful Glucose Oxidation. ACS Catal 2017;7:4408-16. [DOI: 10.1021/acscatal.7b00738] [Cited by in Crossref: 62] [Cited by in F6Publishing: 48] [Article Influence: 12.4] [Reference Citation Analysis]
41 Manikandan PN, Imran H, Dharuman V. Self‐powered polymer–metal oxide hybrid solar cell for non‐enzymatic potentiometric sensing of bilirubin. Med Devices Sens 2019;2. [DOI: 10.1002/mds3.10031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
42 Xu J, Tsai YL, Hsu SH. Design Strategies of Conductive Hydrogel for Biomedical Applications. Molecules 2020;25:E5296. [PMID: 33202861 DOI: 10.3390/molecules25225296] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Xiao X, Siepenkoetter T, Conghaile PÓ, Leech D, Magner E. Nanoporous Gold-Based Biofuel Cells on Contact Lenses. ACS Appl Mater Interfaces 2018;10:7107-16. [DOI: 10.1021/acsami.7b18708] [Cited by in Crossref: 64] [Cited by in F6Publishing: 43] [Article Influence: 16.0] [Reference Citation Analysis]
44 Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020;120:12903-93. [DOI: 10.1021/acs.chemrev.0c00472] [Cited by in Crossref: 34] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
45 Grattieri M, Minteer SD. Self-Powered Biosensors. ACS Sens 2018;3:44-53. [PMID: 29161018 DOI: 10.1021/acssensors.7b00818] [Cited by in Crossref: 171] [Cited by in F6Publishing: 131] [Article Influence: 42.8] [Reference Citation Analysis]
46 Bollella P, Boeva Z, Latonen RM, Kano K, Gorton L, Bobacka J. Highly sensitive and stable fructose self-powered biosensor based on a self-charging biosupercapacitor. Biosens Bioelectron 2021;176:112909. [PMID: 33385803 DOI: 10.1016/j.bios.2020.112909] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
47 Lopez F, Zerria S, Ruff A, Schuhmann W. An O 2 Tolerant Polymer/Glucose Oxidase Based Bioanode as Basis for a Self-powered Glucose Sensor. Electroanalysis 2018;30:1311-8. [DOI: 10.1002/elan.201700785] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
48 Pundir CS, Narwal V, Batra B. Determination of lactic acid with special emphasis on biosensing methods: A review. Biosensors and Bioelectronics 2016;86:777-90. [DOI: 10.1016/j.bios.2016.07.076] [Cited by in Crossref: 52] [Cited by in F6Publishing: 39] [Article Influence: 8.7] [Reference Citation Analysis]
49 Ferreira M, Sharma SK, Paudyal S, Leblanc RM. Interfacial behavior of Lactate Oxidase at Air-Subphase interface. J Colloid Interface Sci 2021;589:173-8. [PMID: 33460849 DOI: 10.1016/j.jcis.2020.12.120] [Reference Citation Analysis]
50 Chou JC, Yan SJ, Liao YH, Lai CH, Wu YX, Wu CY, Chen HY, Huang HY, Wu TY. Fabrication of Flexible Arrayed Lactate Biosensor Based on Immobilizing LDH-NAD⁺ on NiO Film Modified by GO and MBs. Sensors (Basel) 2017;17:E1618. [PMID: 28704960 DOI: 10.3390/s17071618] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
51 Xu C, Li G, Zhou M, Hu Z. Carbon nanorods assembled coral-like hierarchical meso-macroporous carbon as sustainable materials for efficient biosensing and biofuel cell. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339994] [Reference Citation Analysis]
52 Kai H, Kato Y, Toyosato R, Nishizawa M. Fluid-permeable enzymatic lactate sensors for micro-volume specimen. Analyst 2018;143:5545-51. [PMID: 30302486 DOI: 10.1039/c8an00979a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
53 Escalona-villalpando R, Ortiz-ortega E, Bocanegra-ugalde J, Minteer SD, Ledesma-garcía J, Arriaga L. Clean energy from human sweat using an enzymatic patch. Journal of Power Sources 2019;412:496-504. [DOI: 10.1016/j.jpowsour.2018.11.076] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
54 Qu F, Ma X, Hui Y, Chen F, Gao Y, Chen Y. Surfactant-assisted preparation of nanohybrid for simultaneously improving enzyme-immobilization and electron-transfer in biosensor and biofuel cell. J Solid State Electrochem 2017;21:1545-57. [DOI: 10.1007/s10008-017-3509-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
55 Yu Y, Zhai J, Xia Y, Dong S. Single wearable sensing energy device based on photoelectric biofuel cells for simultaneous analysis of perspiration and illuminance. Nanoscale 2017;9:11846-50. [DOI: 10.1039/c7nr04335j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 3] [Article Influence: 4.6] [Reference Citation Analysis]
56 Gonzalez-Solino C, Lorenzo MD. Enzymatic Fuel Cells: Towards Self-Powered Implantable and Wearable Diagnostics. Biosensors (Basel) 2018;8:E11. [PMID: 29382147 DOI: 10.3390/bios8010011] [Cited by in Crossref: 63] [Cited by in F6Publishing: 32] [Article Influence: 15.8] [Reference Citation Analysis]
57 Fu L, Liu J, Hu Z, Zhou M. Recent Advances in the Construction of Biofuel Cells Based Self-powered Electrochemical Biosensors: A Review. Electroanalysis 2018;30:2535-50. [DOI: 10.1002/elan.201800487] [Cited by in Crossref: 45] [Cited by in F6Publishing: 31] [Article Influence: 11.3] [Reference Citation Analysis]
58 Cheng H, Hu C, Ji Z, Ma W, Wang H. A solid ionic Lactate biosensor using doped graphene-like membrane of Au-EVIMC-titania nanotubes-polyaniline. Biosensors and Bioelectronics 2018;118:97-101. [DOI: 10.1016/j.bios.2018.07.031] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
59 Gu C, Gai P, Han L, Yu W, Liu Q, Li F. Enzymatic biofuel cell-based self-powered biosensing of protein kinase activity and inhibition via thiophosphorylation-mediated interface engineering. Chem Commun 2018;54:5438-41. [DOI: 10.1039/c8cc02328j] [Cited by in Crossref: 16] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
60 Hiraka K, Tsugawa W, Asano R, Yokus MA, Ikebukuro K, Daniele MA, Sode K. Rational design of direct electron transfer type l-lactate dehydrogenase for the development of multiplexed biosensor. Biosens Bioelectron 2021;176:112933. [PMID: 33395570 DOI: 10.1016/j.bios.2020.112933] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 9.0] [Reference Citation Analysis]
61 Xiao X, Conghaile PÓ, Leech D, Magner E. Use of Polymer Coatings to Enhance the Response of Redox‐Polymer‐Mediated Electrodes. ChemElectroChem 2019;6:1344-9. [DOI: 10.1002/celc.201800983] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
62 Dagar K, Pundir C. An improved amperometric L-lactate biosensor based on covalent immobilization of microbial lactate oxidase onto carboxylated multiwalled carbon nanotubes/copper nanoparticles/polyaniline modified pencil graphite electrode. Enzyme and Microbial Technology 2017;96:177-86. [DOI: 10.1016/j.enzmictec.2016.10.014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 21] [Article Influence: 6.6] [Reference Citation Analysis]
63 Sun X, Zhang H, Hao S, Zhai J, Dong S. A Self-Powered Biosensor with a Flake Electrochromic Display for Electrochemical and Colorimetric Formaldehyde Detection. ACS Sens 2019;4:2631-7. [PMID: 31441298 DOI: 10.1021/acssensors.9b00917] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 8.3] [Reference Citation Analysis]
64 Aller-pellitero M, Santiago-malagón S, Ruiz J, Alonso Y, Lakard B, Hihn J, Guirado G, del Campo FJ. Fully-printed and silicon free self-powered electrochromic biosensors: Towards naked eye quantification. Sensors and Actuators B: Chemical 2020;306:127535. [DOI: 10.1016/j.snb.2019.127535] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
65 Holzberg TR, Watson V, Brown S, Andar A, Ge X, Kostov Y, Tolosa L, Rao G. Sensors for biomanufacturing process development: facilitating the shift from batch to continuous manufacturing. Current Opinion in Chemical Engineering 2018;22:115-27. [DOI: 10.1016/j.coche.2018.09.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
66 Mano N, de Poulpiquet A. O 2 Reduction in Enzymatic Biofuel Cells. Chem Rev 2018;118:2392-468. [DOI: 10.1021/acs.chemrev.7b00220] [Cited by in Crossref: 162] [Cited by in F6Publishing: 102] [Article Influence: 32.4] [Reference Citation Analysis]
67 Çakıroğlu B, Özacar M. A self-powered photoelectrochemical glucose biosensor based on supercapacitor Co3O4-CNT hybrid on TiO2. Biosensors and Bioelectronics 2018;119:34-41. [DOI: 10.1016/j.bios.2018.07.049] [Cited by in Crossref: 73] [Cited by in F6Publishing: 48] [Article Influence: 18.3] [Reference Citation Analysis]
68 Chou J, Yan S, Liao Y, Lai C, Chen J, Chen H, Wu C, Wu Y. Reaction of NiO film on flexible substrates with buffer solutions and application to flexible arrayed lactate biosensor. Microelectronics Reliability 2018;83:249-53. [DOI: 10.1016/j.microrel.2017.06.036] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
69 Bollella P, Gorton L. Enzyme based amperometric biosensors. Current Opinion in Electrochemistry 2018;10:157-73. [DOI: 10.1016/j.coelec.2018.06.003] [Cited by in Crossref: 88] [Cited by in F6Publishing: 42] [Article Influence: 22.0] [Reference Citation Analysis]
70 Liu X, Zhao L, Liu F, Astruc D, Gu H. Supramolecular redox-responsive ferrocene hydrogels and microgels. Coordination Chemistry Reviews 2020;419:213406. [DOI: 10.1016/j.ccr.2020.213406] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
71 Jeerapan I, Sonsa-ard T, Nacapricha D. Applying Nanomaterials to Modern Biomedical Electrochemical Detection of Metabolites, Electrolytes, and Pathogens. Chemosensors 2020;8:71. [DOI: 10.3390/chemosensors8030071] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
72 Manivel P, Suryanarayanan V, Nesakumar N, Velayutham D, Madasamy K, Kathiresan M, Kulandaisamy AJ, Rayappan JBB. A novel electrochemical sensor based on a nickel-metal organic framework for efficient electrocatalytic oxidation and rapid detection of lactate. New J Chem 2018;42:11839-46. [DOI: 10.1039/c8nj02118j] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 3.8] [Reference Citation Analysis]
73 Minteer SD. Catalytic materials for biofuel conversion. International Materials Reviews 2018;63:241-56. [DOI: 10.1080/09506608.2017.1423158] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
74 Xu Z, Liu Y, Williams I, Li Y, Qian F, Wang L, Lei Y, Li B. Flat enzyme-based lactate biofuel cell integrated with power management system: Towards long term in situ power supply for wearable sensors. Applied Energy 2017;194:71-80. [DOI: 10.1016/j.apenergy.2017.01.104] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
75 Vo R, Hsu HH, Jiang X. Hydrogel facilitated bioelectronic integration. Biomater Sci 2021;9:23-37. [PMID: 33094761 DOI: 10.1039/d0bm01373k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Das P, Bachu V, Barbora L, Dutta A, Sarma MK, Goswami P. Passive fuel delivery and efficient anoxic condition in anode improve performance of methanol biofuel cell. Applied Energy 2022;305:117824. [DOI: 10.1016/j.apenergy.2021.117824] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
77 Wang Y, Sun H, Liu M, Lu H, Zhao G. A novel self-powered aptasensor for environmental pollutants detection based on simple and efficient enzymatic biofuel cell. Sensors and Actuators B: Chemical 2020;305:127468. [DOI: 10.1016/j.snb.2019.127468] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
78 Rubio L, Guerra E, Garcia-jares C, Lores M. Body-decorating products: Ingredients of permanent and temporary tattoos from analytical and european regulatory perspectives. Analytica Chimica Acta 2019;1079:59-72. [DOI: 10.1016/j.aca.2019.06.052] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
79 Farzin L, Shamsipur M, Samandari L, Sheibani S. Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: A review. Mikrochim Acta 2018;185:276. [PMID: 29721621 DOI: 10.1007/s00604-018-2820-8] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
80 Zhang H, Yu Y, Zhang L, Zhai Y, Dong S. Self-powered fluorescence display devices based on a fast self-charging/recharging battery (Mg/Prussian blue). Chem Sci 2016;7:6721-7. [PMID: 28451116 DOI: 10.1039/c6sc02347a] [Cited by in Crossref: 27] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
81 Walker NL, Dick JE. Versatile potentiometric metabolite sensing without dioxygen interference. Biosensors and Bioelectronics 2022;201:113888. [DOI: 10.1016/j.bios.2021.113888] [Reference Citation Analysis]
82 Jung IY, Kim JS, Choi BR, Lee K, Lee H. Hydrogel Based Biosensors for In Vitro Diagnostics of Biochemicals, Proteins, and Genes. Adv Healthc Mater 2017;6. [PMID: 28371450 DOI: 10.1002/adhm.201601475] [Cited by in Crossref: 79] [Cited by in F6Publishing: 64] [Article Influence: 15.8] [Reference Citation Analysis]
83 Zhao J, Zhang C, Sun C, Li W, Zhang S, Li S, Zhang D. Electron transfer mechanism of biocathode in a bioelectrochemical system coupled with chemical absorption for NO removal. Bioresource Technology 2018;254:16-22. [DOI: 10.1016/j.biortech.2018.01.066] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
84 Díaz-gonzález JM, Escalona-villalpando RA, Arriaga LG, Minteer SD, Casanova-moreno JR. Effects of the cross-linker on the performance and stability of enzymatic electrocatalytic films of glucose oxidase and dimethylferrocene-modified linear poly(ethyleneimine). Electrochimica Acta 2020;337:135782. [DOI: 10.1016/j.electacta.2020.135782] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
85 Yu Z, Cai G, Ren R, Tang D. A new enzyme immunoassay for alpha-fetoprotein in a separate setup coupling an aluminium/Prussian blue-based self-powered electrochromic display with a digital multimeter readout. Analyst 2018;143:2992-6. [DOI: 10.1039/c8an00839f] [Cited by in Crossref: 31] [Cited by in F6Publishing: 2] [Article Influence: 7.8] [Reference Citation Analysis]
86 Franco JH, Minteer SD, De Andrade AR. Ethanol Biofuel Cells: Hybrid Catalytic Cascades as a Tool for Biosensor Devices. Biosensors (Basel) 2021;11:41. [PMID: 33557146 DOI: 10.3390/bios11020041] [Reference Citation Analysis]
87 Ruff A, Pinyou P, Nolten M, Conzuelo F, Schuhmann W. A Self-Powered Ethanol Biosensor. ChemElectroChem 2017;4:890-7. [DOI: 10.1002/celc.201600864] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 5.2] [Reference Citation Analysis]
88 Gualandi I, Tessarolo M, Mariani F, Arcangeli D, Possanzini L, Tonelli D, Fraboni B, Scavetta E. Layered Double Hydroxide-Modified Organic Electrochemical Transistor for Glucose and Lactate Biosensing. Sensors (Basel) 2020;20:E3453. [PMID: 32570942 DOI: 10.3390/s20123453] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
89 Sailapu SK, Kraikaew P, Sabaté N, Bakker E. Self-Powered Potentiometric Sensor Transduction to a Capacitive Electronic Component for Later Readout. ACS Sens 2020;5:2909-14. [PMID: 32881477 DOI: 10.1021/acssensors.0c01284] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
90 Hiraka K, Kojima K, Lin C, Tsugawa W, Asano R, La Belle JT, Sode K. Minimizing the effects of oxygen interference on l -lactate sensors by a single amino acid mutation in Aerococcus viridans l -lactate oxidase. Biosensors and Bioelectronics 2018;103:163-70. [DOI: 10.1016/j.bios.2017.12.018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
91 Quah T, Abdellaoui S, Milton RD, Hickey DP, Minteer SD. Cholesterol as a Promising Alternative Energy Source: Bioelectrocatalytic Oxidation Using NAD-Dependent Cholesterol Dehydrogenase in Human Serum. J Electrochem Soc 2016;164:H3024-9. [DOI: 10.1149/2.0021703jes] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
92 Schuck A, Kim HE, Moreira JK, Lora PS, Kim YS. A Graphene-Based Enzymatic Biosensor Using a Common-Gate Field-Effect Transistor for L-Lactic Acid Detection in Blood Plasma Samples. Sensors (Basel) 2021;21:1852. [PMID: 33800892 DOI: 10.3390/s21051852] [Reference Citation Analysis]
93 Jin X, Bandodkar AJ, Fratus M, Asadpour R, Rogers JA, Alam MA. Modeling, design guidelines, and detection limits of self-powered enzymatic biofuel cell-based sensors. Biosensors and Bioelectronics 2020;168:112493. [DOI: 10.1016/j.bios.2020.112493] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
94 Zhang JL, Wang YH, Huang K, Huang KJ, Jiang H, Wang XM. Enzyme-based biofuel cells for biosensors and in vivo power supply. Nano Energy 2021;84:105853. [DOI: 10.1016/j.nanoen.2021.105853] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
95 Garcia SO, Ulyanova YV, Figueroa-Teran R, Bhatt KH, Singhal S, Atanassov P. Wearable Sensor System Powered by a Biofuel Cell for Detection of Lactate Levels in Sweat. ECS J Solid State Sci Technol 2016;5:M3075-81. [PMID: 27375962 DOI: 10.1149/2.0131608jss] [Cited by in Crossref: 44] [Cited by in F6Publishing: 27] [Article Influence: 7.3] [Reference Citation Analysis]
96 Ali F, Zhou D, Sun N, Ali HW, Abbas A, Iqbal F, Dong F, Kim K. Fluorite-Structured Ferroelectric-/Antiferroelectric-Based Electrostatic Nanocapacitors for Energy Storage Applications. ACS Appl Energy Mater 2020;3:6036-55. [DOI: 10.1021/acsaem.0c00987] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
97 Wu Q, Zhang Q, Yu T, Wang X, Jia C, Zhao Z, Zhao J. Self-Assembled Hybrid Nanogel as a Multifunctional Theranostic Probe for Enzyme-Regulated Ultrasound Imaging and Tumor Therapy. ACS Appl Bio Mater 2021;4:4244-53. [PMID: 35006837 DOI: 10.1021/acsabm.1c00079] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]