BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Minami T, Sato T, Minamiki T, Fukuda K, Kumaki D, Tokito S. A novel OFET-based biosensor for the selective and sensitive detection of lactate levels. Biosensors and Bioelectronics 2015;74:45-8. [DOI: 10.1016/j.bios.2015.06.002] [Cited by in Crossref: 70] [Cited by in F6Publishing: 44] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Richtar J, Heinrichova P, Apaydin DH, Schmiedova V, Yumusak C, Kovalenko A, Weiter M, Sariciftci NS, Krajcovic J. Novel Riboflavin-Inspired Conjugated Bio-Organic Semiconductors. Molecules 2018;23:E2271. [PMID: 30189689 DOI: 10.3390/molecules23092271] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
2 Yuvaraja S, Nawaz A, Liu Q, Dubal D, Surya SG, Salama KN, Sonar P. Organic field-effect transistor-based flexible sensors. Chem Soc Rev 2020;49:3423-60. [DOI: 10.1039/c9cs00811j] [Cited by in Crossref: 52] [Cited by in F6Publishing: 4] [Article Influence: 26.0] [Reference Citation Analysis]
3 Pepłowski A, Walter PA, Janczak D, Górecka Ż, Święszkowski W, Jakubowska M. Solventless Conducting Paste Based on Graphene Nanoplatelets for Printing of Flexible, Standalone Routes in Room Temperature. Nanomaterials (Basel) 2018;8:E829. [PMID: 30322163 DOI: 10.3390/nano8100829] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
4 Minami T, Minamiki T, Tokito S. Detection of mercury(II) ion in water using an organic field-effect transistor with a cysteine-immobilized gold electrode. Jpn J Appl Phys 2016;55:04EL02. [DOI: 10.7567/jjap.55.04el02] [Cited by in Crossref: 15] [Article Influence: 2.5] [Reference Citation Analysis]
5 Li L, Zhang J, Dai H, Cai D, Guo C, Xiao Y, Ma X, Wang Y. A Bio-inspired Extended-Gate Metal-Oxide-Semiconductor Field-Effect-Transistor for Highly Sensitive Amino Acid Enantiodiscrimination. Anal Chem 2021;93:14425-31. [PMID: 34672522 DOI: 10.1021/acs.analchem.1c02460] [Reference Citation Analysis]
6 Baek S, Kwon J, Mano T, Tokito S, Jung S. A Flexible 3D Organic Preamplifier for a Lactate Sensor. Macromol Biosci 2020;20:e2000144. [PMID: 32613734 DOI: 10.1002/mabi.202000144] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
7 Matsui H, Takeda Y, Tokito S. Flexible and printed organic transistors: From materials to integrated circuits. Organic Electronics 2019;75:105432. [DOI: 10.1016/j.orgel.2019.105432] [Cited by in Crossref: 66] [Cited by in F6Publishing: 13] [Article Influence: 22.0] [Reference Citation Analysis]
8 Furusawa H, Ichimura Y, Nagamine K, Shiwaku R, Matsui H, Tokito S. Detection of 1,5-anhydroglucitol as a Biomarker for Diabetes Using an Organic Field-Effect Transistor-Based Biosensor. Technologies 2018;6:77. [DOI: 10.3390/technologies6030077] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
9 Minami T, Minamiki T, Tokito S. Electric Detection of Phosphate Anions in Water by an Extended-gate-type Organic Field-effect Transistor Functionalized with a Zinc(II)–Dipicolylamine Derivative. Chem Lett 2016;45:371-3. [DOI: 10.1246/cl.151193] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
10 Ohshiro K, Sasaki Y, Zhou Q, Lyu X, Yamanashi Y, Nakahara K, Nagaoka H, Minami T. Oxytocin detection at ppt level in human saliva by an extended-gate-type organic field-effect transistor. Analyst 2022;147:1055-9. [PMID: 35191913 DOI: 10.1039/d1an02188e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Han ST, Peng H, Sun Q, Venkatesh S, Chung KS, Lau SC, Zhou Y, Roy VAL. An Overview of the Development of Flexible Sensors. Adv Mater 2017;29. [PMID: 28671711 DOI: 10.1002/adma.201700375] [Cited by in Crossref: 280] [Cited by in F6Publishing: 220] [Article Influence: 56.0] [Reference Citation Analysis]
12 Lee MY, Lee HR, Park CH, Han SG, Oh JH. Organic Transistor-Based Chemical Sensors for Wearable Bioelectronics. Acc Chem Res 2018;51:2829-38. [PMID: 30403337 DOI: 10.1021/acs.accounts.8b00465] [Cited by in Crossref: 95] [Cited by in F6Publishing: 75] [Article Influence: 23.8] [Reference Citation Analysis]
13 Förster A, Günther F, Gemming S, Seifert G. Influence of Electric Fields on the Electron Transport in Donor–Acceptor Polymers. J Phys Chem C 2017;121:3714-23. [DOI: 10.1021/acs.jpcc.6b11230] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
14 Berto M, Diacci C, D'agata R, Pinti M, Bianchini E, Lauro MD, Casalini S, Cossarizza A, Berggren M, Simon D, Spoto G, Biscarini F, Bortolotti CA. EGOFET Peptide Aptasensor for Label-Free Detection of Inflammatory Cytokines in Complex Fluids. Adv Biosys 2018;2:1700072. [DOI: 10.1002/adbi.201700072] [Cited by in Crossref: 30] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
15 Han W, He H, Zhang L, Dong C, Zeng H, Dai Y, Xing L, Zhang Y, Xue X. A Self-Powered Wearable Noninvasive Electronic-Skin for Perspiration Analysis Based on Piezo-Biosensing Unit Matrix of Enzyme/ZnO Nanoarrays. ACS Appl Mater Interfaces 2017;9:29526-37. [PMID: 28782353 DOI: 10.1021/acsami.7b07990] [Cited by in Crossref: 57] [Cited by in F6Publishing: 40] [Article Influence: 11.4] [Reference Citation Analysis]
16 Minami T. Design of Supramolecular Sensors and Their Applications to Optical Chips and Organic Devices. BCSJ 2021;94:24-33. [DOI: 10.1246/bcsj.20200233] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Fan H, Han S, Song Z, Yu J, Katz HE. Organic field-effect transistor gas sensor based on GO/PMMA hybrid dielectric for the enhancement of sensitivity and selectivity to ammonia. Organic Electronics 2019;67:247-52. [DOI: 10.1016/j.orgel.2019.01.038] [Cited by in Crossref: 22] [Article Influence: 7.3] [Reference Citation Analysis]
18 Song M, Seo J, Kim H, Kim Y. Ultrasensitive Multi-Functional Flexible Sensors Based on Organic Field-Effect Transistors with Polymer-Dispersed Liquid Crystal Sensing Layers. Sci Rep 2017;7:2630. [PMID: 28572567 DOI: 10.1038/s41598-017-02160-x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 14] [Article Influence: 7.4] [Reference Citation Analysis]
19 Minami T, Tang W, Asano K. Chemical sensing based on water-gated polythiophene thin-film transistors. Polym J 2021;53:1315-23. [DOI: 10.1038/s41428-021-00537-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Lee S, Lee C, Kim H, Kim Y. n-Channel organic phototransistors with an n-type conjugated polymer based on indacenodithiophene and naphthalenediimide units. J Mater Chem C 2020;8:15778-87. [DOI: 10.1039/d0tc02456b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
21 Shiwaku R, Matsui H, Nagamine K, Uematsu M, Mano T, Maruyama Y, Nomura A, Tsuchiya K, Hayasaka K, Takeda Y, Fukuda T, Kumaki D, Tokito S. A Printed Organic Circuit System for Wearable Amperometric Electrochemical Sensors. Sci Rep 2018;8:6368. [PMID: 29686355 DOI: 10.1038/s41598-018-24744-x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
22 Minami T, Sasaki Y, Minamiki T, Wakida S, Kurita R, Niwa O, Tokito S. Selective nitrate detection by an enzymatic sensor based on an extended-gate type organic field-effect transistor. Biosensors and Bioelectronics 2016;81:87-91. [DOI: 10.1016/j.bios.2016.02.036] [Cited by in Crossref: 51] [Cited by in F6Publishing: 29] [Article Influence: 8.5] [Reference Citation Analysis]
23 Li H, Shi W, Song J, Jang H, Dailey J, Yu J, Katz HE. Chemical and Biomolecule Sensing with Organic Field-Effect Transistors. Chem Rev 2019;119:3-35. [DOI: 10.1021/acs.chemrev.8b00016] [Cited by in Crossref: 154] [Cited by in F6Publishing: 64] [Article Influence: 38.5] [Reference Citation Analysis]
24 Hagara J, Mrkyvkova N, Feriancová L, Putala M, Nádaždy P, Hodas M, Shaji A, Nádaždy V, Huss-hansen MK, Knaapila M, Hagenlocher J, Russegger N, Zwadlo M, Merten L, Sojková M, Hulman M, Vlad A, Pandit P, Roth S, Jergel M, Majková E, Hinderhofer A, Siffalovic P, Schreiber F. Novel highly substituted thiophene-based n-type organic semiconductor: structural study, optical anisotropy and molecular control. CrystEngComm 2020;22:7095-103. [DOI: 10.1039/d0ce01171a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Son H, Kim T, Lee C, Kim H, Kim Y. Ambipolar organic phototransistors with bulk heterojunction films of p-type and n-type indacenodithienothiophene-containing conjugated polymers. J Mater Chem C 2022;10:3951-8. [DOI: 10.1039/d1tc05227f] [Reference Citation Analysis]
26 Qamar AZ, Shamsi MH. Desktop Fabrication of Lab-On-Chip Devices on Flexible Substrates: A Brief Review. Micromachines (Basel) 2020;11:E126. [PMID: 31979275 DOI: 10.3390/mi11020126] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
27 Cummins G, Kremer J, Bernassau A, Brown A, Bridle HL, Schulze H, Bachmann TT, Crichton M, Denison FC, Desmulliez MPY. Sensors for Fetal Hypoxia and Metabolic Acidosis: A Review. Sensors (Basel) 2018;18:E2648. [PMID: 30104478 DOI: 10.3390/s18082648] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
28 Seo J, Song M, Lee C, Nam S, Kim H, Park S, Kang I, Lee J, Kim Y. Physical force-sensitive touch responses in liquid crystal-gated-organic field-effect transistors with polymer dipole control layers. Organic Electronics 2016;28:184-8. [DOI: 10.1016/j.orgel.2015.10.022] [Cited by in Crossref: 5] [Article Influence: 0.8] [Reference Citation Analysis]
29 Zeglio E, Rutz AL, Winkler TE, Malliaras GG, Herland A. Conjugated Polymers for Assessing and Controlling Biological Functions. Adv Mater 2019;31:e1806712. [PMID: 30861237 DOI: 10.1002/adma.201806712] [Cited by in Crossref: 93] [Cited by in F6Publishing: 71] [Article Influence: 31.0] [Reference Citation Analysis]
30 Sarcina L, Macchia E, Tricase A, Scandurra C, Imbriano A, Torricelli F, Cioffi N, Torsi L, Bollella P. Enzyme based field effect transistor: State‐of‐the‐art and future perspectives. Electrochemical Science Adv. [DOI: 10.1002/elsa.202100216] [Reference Citation Analysis]
31 Yu Y, Nyein HYY, Gao W, Javey A. Flexible Electrochemical Bioelectronics: The Rise of In Situ Bioanalysis. Adv Mater 2020;32:e1902083. [PMID: 31432573 DOI: 10.1002/adma.201902083] [Cited by in Crossref: 119] [Cited by in F6Publishing: 99] [Article Influence: 59.5] [Reference Citation Analysis]
32 Li P, Lee GH, Kim SY, Kwon SY, Kim HR, Park S. From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS Nano 2021;15:1960-2004. [PMID: 33534541 DOI: 10.1021/acsnano.0c06688] [Cited by in Crossref: 54] [Cited by in F6Publishing: 30] [Article Influence: 54.0] [Reference Citation Analysis]
33 Jiang Y, Liu Z, Yin Z, Zheng Q. Sandwich structured dielectrics for air-stable and flexible low-voltage organic transistors in ultrasensitive pressure sensing. Mater Chem Front 2020;4:1459-70. [DOI: 10.1039/d0qm00062k] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
34 Dai DSHS, Peng B, Chen M, He Z, Leung TKW, Chik GKK, Fan S, Lu Y, Chan PKL. Organic Field-Effect Transistor Fabricated on Internal Shrinking Substrate. Small 2021;:e2106066. [PMID: 34881811 DOI: 10.1002/smll.202106066] [Reference Citation Analysis]
35 Pundir CS, Narwal V, Batra B. Determination of lactic acid with special emphasis on biosensing methods: A review. Biosensors and Bioelectronics 2016;86:777-90. [DOI: 10.1016/j.bios.2016.07.076] [Cited by in Crossref: 52] [Cited by in F6Publishing: 39] [Article Influence: 8.7] [Reference Citation Analysis]
36 Didier P, Minami T. Non-enzymatic lactate detection by an extended-gate type organic field effect transistor. Semicond Sci Technol 2020;35:11LT02. [DOI: 10.1088/1361-6641/abb288] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
37 Surdo S, Duocastella M, Diaspro A. Nanopatterning with Photonic Nanojets: Review and Perspectives in Biomedical Research. Micromachines (Basel) 2021;12:256. [PMID: 33802351 DOI: 10.3390/mi12030256] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
38 Mohd Halizan MZ, Roslan NA, Abdullah SM, Abdul Halim N, Velayutham TS, Woon KL, Supangat A. Improving the operational voltage of vertical organic field effect transistor (VOFET) by altering the morphology of dielectric layer. J Mater Sci: Mater Electron 2017;28:11961-8. [DOI: 10.1007/s10854-017-7005-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
39 Yang X, Cheng H. Recent Developments of Flexible and Stretchable Electrochemical Biosensors. Micromachines (Basel) 2020;11:E243. [PMID: 32111023 DOI: 10.3390/mi11030243] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 8.5] [Reference Citation Analysis]
40 Simon DT, Gabrielsson EO, Tybrandt K, Berggren M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem Rev 2016;116:13009-41. [PMID: 27367172 DOI: 10.1021/acs.chemrev.6b00146] [Cited by in Crossref: 271] [Cited by in F6Publishing: 200] [Article Influence: 45.2] [Reference Citation Analysis]
41 Mano T, Nagamine K, Ichimura Y, Shiwaku R, Furusawa H, Matsui H, Kumaki D, Tokito S. Printed Organic Transistor‐Based Enzyme Sensor for Continuous Glucose Monitoring in Wearable Healthcare Applications. ChemElectroChem 2018;5:3881-6. [DOI: 10.1002/celc.201801129] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
42 Thomas MS, Adrahtas DZ, Frisbie CD, Dorfman KD. Modeling of Quasi-Static Floating-Gate Transistor Biosensors. ACS Sens 2021;6:1910-7. [PMID: 33886283 DOI: 10.1021/acssensors.1c00261] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Xiao D, Hu C, Xu X, Lü C, Wang Q, Zhang W, Gao C, Xu P, Wang X, Ma C. A d,l-lactate biosensor based on allosteric transcription factor LldR and amplified luminescent proximity homogeneous assay. Biosens Bioelectron 2022;211:114378. [PMID: 35617798 DOI: 10.1016/j.bios.2022.114378] [Reference Citation Analysis]
44 Phan H, Ford MJ, Lill AT, Wang M, Bazan GC, Nguyen T. Electrical Double-Slope Nonideality in Organic Field-Effect Transistors. Adv Funct Mater 2018;28:1707221. [DOI: 10.1002/adfm.201707221] [Cited by in Crossref: 45] [Cited by in F6Publishing: 34] [Article Influence: 11.3] [Reference Citation Analysis]
45 Economou A, Kokkinos C, Prodromidis M. Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing. Lab Chip 2018;18:1812-30. [DOI: 10.1039/c8lc00025e] [Cited by in Crossref: 62] [Cited by in F6Publishing: 14] [Article Influence: 15.5] [Reference Citation Analysis]
46 Lee YH, Kweon OY, Kim H, Yoo JH, Han SG, Oh JH. Recent advances in organic sensors for health self-monitoring systems. J Mater Chem C 2018;6:8569-612. [DOI: 10.1039/c8tc02230e] [Cited by in Crossref: 59] [Cited by in F6Publishing: 2] [Article Influence: 14.8] [Reference Citation Analysis]
47 Zan X, Bai H. Review—Novel Carbon Nanomaterials Based Flexible Electrochemical Biosensors. J Electrochem Soc 2021;168:027504. [DOI: 10.1149/1945-7111/abdddd] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
48 Klinghammer S, Rauch S, Pregl S, Uhlmann P, Baraban L, Cuniberti G. Surface Modification of Silicon Nanowire Based Field Effect Transistors with Stimuli Responsive Polymer Brushes for Biosensing Applications. Micromachines (Basel) 2020;11:E274. [PMID: 32155794 DOI: 10.3390/mi11030274] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
49 Zhai Q, Cheng W. Soft and stretchable electrochemical biosensors. Materials Today Nano 2019;7:100041. [DOI: 10.1016/j.mtnano.2019.100041] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 6.7] [Reference Citation Analysis]
50 Nishinaka M, Jinno H, Jimbo Y, Lee S, Wang J, Lee W, Yokota T, Someya T. High‐Transconductance Organic Electrochemical Transistor Fabricated on Ultrathin Films Using Spray Coating. Small Structures 2021;2:2000088. [DOI: 10.1002/sstr.202000088] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
51 An BW, Shin JH, Kim SY, Kim J, Ji S, Park J, Lee Y, Jang J, Park YG, Cho E, Jo S, Park JU. Smart Sensor Systems for Wearable Electronic Devices. Polymers (Basel) 2017;9:E303. [PMID: 30970981 DOI: 10.3390/polym9080303] [Cited by in Crossref: 103] [Cited by in F6Publishing: 42] [Article Influence: 20.6] [Reference Citation Analysis]
52 Li L, Wang S, Xiao Y, Wang Y. Recent Advances in Immobilization Strategies for Biomolecules in Sensors Using Organic Field-Effect Transistors. Trans Tianjin Univ 2020;26:424-40. [DOI: 10.1007/s12209-020-00234-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
53 Tang W, Huang Y, Han L, Liu R, Su Y, Guo X, Yan F. Recent progress in printable organic field effect transistors. J Mater Chem C 2019;7:790-808. [DOI: 10.1039/c8tc05485a] [Cited by in Crossref: 60] [Cited by in F6Publishing: 2] [Article Influence: 20.0] [Reference Citation Analysis]
54 Nguy TP, Hayakawa R, Kilinc V, Petit M, Yemineni SLVN, Higuchi M, Raimundo J, Charrier AM, Wakayama Y. Electrolyte-gated-organic field effect transistors functionalized by lipid monolayers with tunable pH sensitivity for sensor applications. Appl Phys Express 2020;13:011005. [DOI: 10.7567/1882-0786/ab5322] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
55 Mansouri Majd S, Salimi A, Astinchap B. Label-free attomolar detection of lactate based on radio frequency sputtered of nickel oxide thin film field effect transistor. Biosensors and Bioelectronics 2017;92:733-40. [DOI: 10.1016/j.bios.2016.09.097] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
56 Hernández-Ibáñez N, García-Cruz L, Montiel V, Foster CW, Banks CE, Iniesta J. Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosens Bioelectron 2016;77:1168-74. [PMID: 26579934 DOI: 10.1016/j.bios.2015.11.005] [Cited by in Crossref: 101] [Cited by in F6Publishing: 75] [Article Influence: 14.4] [Reference Citation Analysis]
57 Surya SG, Raval HN, Ahmad R, Sonar P, Salama KN, Rao V. Organic field effect transistors (OFETs) in environmental sensing and health monitoring: A review. TrAC Trends in Analytical Chemistry 2019;111:27-36. [DOI: 10.1016/j.trac.2018.11.027] [Cited by in Crossref: 37] [Cited by in F6Publishing: 12] [Article Influence: 12.3] [Reference Citation Analysis]
58 Wu Z, Yan Y, Zhao Y, Liu Y. Recent Advances in Realizing Highly Aligned Organic Semiconductors by Solution-Processing Approaches. Small Methods 2022;:e2200752. [PMID: 35793415 DOI: 10.1002/smtd.202200752] [Reference Citation Analysis]
59 Chen C, Yip B, Pan F, Sheu J. Optimization of Nanobelt Field Effect Transistor with a Capacitive Extended Gate for Use as a Biosensor. ECS J Solid State Sci Technol 2018;7:Q3172-9. [DOI: 10.1149/2.0251807jss] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
60 Nguy TP, Hayakawa R, Kilinc V, Petit M, Raimundo J, Charrier A, Wakayama Y. Stable operation of water-gated organic field-effect transistor depending on channel flatness, electrode metals and surface treatment. Jpn J Appl Phys 2019;58:SDDH02. [DOI: 10.7567/1347-4065/ab09d2] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
61 Wu Q, Chen H, Fang A, Wu X, Liu M, Li H, Zhang Y, Yao S. Universal Multifunctional Nanoplatform Based on Target-Induced in Situ Promoting Au Seeds Growth to Quench Fluorescence of Upconversion Nanoparticles. ACS Sens 2017;2:1805-13. [PMID: 29185338 DOI: 10.1021/acssensors.7b00616] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 5.4] [Reference Citation Analysis]
62 Crapnell RD, Tridente A, Banks CE, Dempsey-Hibbert NC. Evaluating the Possibility of Translating Technological Advances in Non-Invasive Continuous Lactate Monitoring into Critical Care. Sensors (Basel) 2021;21:879. [PMID: 33525567 DOI: 10.3390/s21030879] [Reference Citation Analysis]