BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Varjani S, Rakholiya P, Yong Ng H, Taherzadeh MJ, Hao Ngo H, Chang JS, Wong JWC, You S, Teixeira JA, Bui XT. Bio-based rhamnolipids production and recovery from waste streams: Status and perspectives. Bioresour Technol 2021;319:124213. [PMID: 33254448 DOI: 10.1016/j.biortech.2020.124213] [Cited by in Crossref: 8] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Linda Mgbechidinma C, Donald Akan O, Zhang C, Huang M, Linus N, Zhu H, Monilola Wakil S. Integration of Green Economy Concepts for Sustainable Biosurfactant Production - A Review. Bioresour Technol 2022;:128021. [PMID: 36167175 DOI: 10.1016/j.biortech.2022.128021] [Reference Citation Analysis]
2 Zhang Y, Placek TL, Jahan R, Alexandridis P, Tsianou M. Rhamnolipid Micellization and Adsorption Properties. IJMS 2022;23:11090. [DOI: 10.3390/ijms231911090] [Reference Citation Analysis]
3 Liu G, Li X, Zhang R, Ma X, Xie H. Enhancing the decomposition and volatile fatty acids production of excess sludge: Synergistic pretreatment by endogenous lysozyme and rhamnolipid. Fuel 2022;323:124233. [DOI: 10.1016/j.fuel.2022.124233] [Reference Citation Analysis]
4 Johnravindar D, Wong JW, Dharma Patria R, Uisan K, Kumar R, Kaur G. Bioreactor-scale production of rhamnolipids from food waste digestate and its recirculation into anaerobic digestion for enhanced process performance: Creating closed-loop integrated biorefinery framework. Bioresource Technology 2022;360:127578. [DOI: 10.1016/j.biortech.2022.127578] [Reference Citation Analysis]
5 Gaur VK, Gautam K, Sharma P, Gupta P, Dwivedi S, Srivastava JK, Varjani S, Ngo HH, Kim SH, Chang JS, Bui XT, Taherzadeh MJ, Parra-Saldívar R. Sustainable strategies for combating hydrocarbon pollution: Special emphasis on mobil oil bioremediation. Sci Total Environ 2022;832:155083. [PMID: 35395309 DOI: 10.1016/j.scitotenv.2022.155083] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Vaidyanathan VK, Rathankumar AK, P SK, Rangasamy G, Saikia K, Rajendran DS, Venkataraman S, Varjani S. Utilization of surface-active compounds derived from biosolids to remediate polycyclic aromatic hydrocarbons contaminated sediment soil. Environmental Research 2022. [DOI: 10.1016/j.envres.2022.114180] [Reference Citation Analysis]
7 Chafale A, Kapley A. Biosurfactants as microbial bioactive compounds in microbial enhanced oil recovery. Journal of Biotechnology 2022;352:1-15. [DOI: 10.1016/j.jbiotec.2022.05.003] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Wang Y, Wu S, Wang H, Dong Y, Li X, Wang S, Fan H, Zhuang X. Optimization of conditions for a surfactant-producing strain and application to petroleum hydrocarbon-contaminated soil bioremediation. Colloids Surf B Biointerfaces 2022;213:112428. [PMID: 35231686 DOI: 10.1016/j.colsurfb.2022.112428] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Moura CC, Salazar-bryam AM, Piazza RD, Carvalho dos Santos C, Jafelicci M, Marques RFC, Contiero J. Rhamnolipids as Green Stabilizers of nZVI and Application in the Removal of Nitrate From Simulated Groundwater. Front Bioeng Biotechnol 2022;10:794460. [DOI: 10.3389/fbioe.2022.794460] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Patowary R, Patowary K, Kalita MC, Deka S, Lam SS, Sarma H. Green production of noncytotoxic rhamnolipids from jackfruit waste: process and prospects. Biomass Conv Bioref . [DOI: 10.1007/s13399-022-02427-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Shi S, Teng Z, Liu J, Li T. Conversion of Waste Cooking Oil to Rhamnolipid by a Newly Oleophylic Pseudomonas aeruginosa WO2. Int J Environ Res Public Health 2022;19:1700. [PMID: 35162723 DOI: 10.3390/ijerph19031700] [Reference Citation Analysis]
12 Gaur VK, Sharma P, Gupta S, Varjani S, Srivastava J, Wong JW, Ngo HH. Opportunities and challenges in omics approaches for biosurfactant production and feasibility of site remediation: Strategies and advancements. Environmental Technology & Innovation 2022;25:102132. [DOI: 10.1016/j.eti.2021.102132] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
13 Li X, Sui K, Zhang J, Liu X, Xu Q, Wang D, Yang Q. Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge. Sci Total Environ 2022;806:150347. [PMID: 34563898 DOI: 10.1016/j.scitotenv.2021.150347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
14 Raj A, Kumar A, Dames JF. Tapping the Role of Microbial Biosurfactants in Pesticide Remediation: An Eco-Friendly Approach for Environmental Sustainability. Front Microbiol 2021;12:791723. [PMID: 35003022 DOI: 10.3389/fmicb.2021.791723] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
15 Shen C, Zhang Q, Meng Q. PSU-g-SBMA hollow fiber membrane for treatment of oily wastewater. Water Sci Technol 2021;84:3576-85. [PMID: 34928827 DOI: 10.2166/wst.2021.363] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Tomczak W, Gryta M. Membrane Distillation of Saline Water Contaminated with Oil and Surfactants. Membranes (Basel) 2021;11:988. [PMID: 34940489 DOI: 10.3390/membranes11120988] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Sharma P, Gaur VK, Gupta S, Varjani S, Pandey A, Gnansounou E, You S, Ngo HH, Wong JWC. Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. Sci Total Environ 2021;811:152357. [PMID: 34921885 DOI: 10.1016/j.scitotenv.2021.152357] [Cited by in F6Publishing: 16] [Reference Citation Analysis]
18 Jiang J, Zhang D, Niu J, Jin M, Long X. Extremely high-performance production of rhamnolipids by advanced sequential fed-batch fermentation with high cell density. Journal of Cleaner Production 2021;326:129382. [DOI: 10.1016/j.jclepro.2021.129382] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Usmani Z, Sharma M, Gaffey J, Sharma M, Dewhurst RJ, Moreau B, Newbold J, Clark W, Thakur VK, Gupta VK. Valorization of dairy waste and by-products through microbial bioprocesses. Bioresour Technol 2021;:126444. [PMID: 34848333 DOI: 10.1016/j.biortech.2021.126444] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Gaur VK, Sharma P, Sirohi R, Varjani S, Taherzadeh MJ, Chang JS, Yong Ng H, Wong JWC, Kim SH. Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresour Technol 2022;343:126059. [PMID: 34606921 DOI: 10.1016/j.biortech.2021.126059] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 21.0] [Reference Citation Analysis]
21 Li J, Zhang J, Chen L, Zhang G, Liao J. Surface Properties and Liquid Crystal Properties of Alkyltetra(oxyethyl) β-d-Glucopyranoside. J Agric Food Chem 2021;69:10617-29. [PMID: 34473514 DOI: 10.1021/acs.jafc.1c03630] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
22 Patel GB, Rakholiya P, Shindhal T, Varjani S, Tabhani NM, Shah KR. Lipolytic Nocardiopsis for reduction of pollution load in textile industry effluent and SWISS model for structural study of lipase. Bioresour Technol 2021;341:125673. [PMID: 34493419 DOI: 10.1016/j.biortech.2021.125673] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
23 Quraishi M, Bhatia SK, Pandit S, Gupta PK, Rangarajan V, Lahiri D, Varjani S, Mehariya S, Yang Y. Exploiting Microbes in the Petroleum Field: Analyzing the Credibility of Microbial Enhanced Oil Recovery (MEOR). Energies 2021;14:4684. [DOI: 10.3390/en14154684] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
24 Mohanty SS, Koul Y, Varjani S, Pandey A, Ngo HH, Chang JS, Wong JWC, Bui XT. A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microb Cell Fact 2021;20:120. [PMID: 34174898 DOI: 10.1186/s12934-021-01613-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 41] [Article Influence: 2.0] [Reference Citation Analysis]
25 Mishra S, Lin Z, Pang S, Zhang Y, Bhatt P, Chen S. Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. J Hazard Mater 2021;418:126253. [PMID: 34119972 DOI: 10.1016/j.jhazmat.2021.126253] [Cited by in F6Publishing: 25] [Reference Citation Analysis]
26 Adesra A, Srivastava VK, Varjani S. Valorization of Dairy Wastes: Integrative Approaches for Value Added Products. Indian J Microbiol 2021;61:270-8. [PMID: 34294992 DOI: 10.1007/s12088-021-00943-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
27 Xu Q, Luo T, Wu R, Wei W, Sun J, Dai X, Ni B. Rhamnolipid pretreatment enhances methane production from two-phase anaerobic digestion of waste activated sludge. Water Research 2021;194:116909. [DOI: 10.1016/j.watres.2021.116909] [Cited by in Crossref: 7] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
28 Markande AR, Patel D, Varjani S. A review on biosurfactants: properties, applications and current developments. Bioresour Technol 2021;330:124963. [PMID: 33744735 DOI: 10.1016/j.biortech.2021.124963] [Cited by in Crossref: 8] [Cited by in F6Publishing: 56] [Article Influence: 8.0] [Reference Citation Analysis]