BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kumar M, Xiong X, Wan Z, Sun Y, Tsang DC, Gupta J, Gao B, Cao X, Tang J, Ok YS. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresource Technology 2020;312:123613. [DOI: 10.1016/j.biortech.2020.123613] [Cited by in Crossref: 142] [Cited by in F6Publishing: 113] [Article Influence: 47.3] [Reference Citation Analysis]
Number Citing Articles
1 Che H, Wei G, Fan Z, Zhu Y, Zhang L, Wei Z, Huang X, Wei L. Super facile one-step synthesis of sugarcane bagasse derived N-doped porous biochar for adsorption of ciprofloxacin. J Environ Manage 2023;335:117566. [PMID: 36867900 DOI: 10.1016/j.jenvman.2023.117566] [Reference Citation Analysis]
2 Xue C, Zhou L, Fang Z. Remediation of polybrominated diphenyl ethers contaminated soil in the e-waste disposal site by ball milling modified zero valent iron activated persulfate. Chemosphere 2023;324:138376. [PMID: 36905994 DOI: 10.1016/j.chemosphere.2023.138376] [Reference Citation Analysis]
3 Du X, Lin Z, Zhang Y, Li P. Microstructural tailoring of porous few-layer graphene-like biochar from kitchen waste hydrolysis residue in molten carbonate medium: Structural evolution and conductive additive-free supercapacitor application. Sci Total Environ 2023;871:162045. [PMID: 36754327 DOI: 10.1016/j.scitotenv.2023.162045] [Reference Citation Analysis]
4 Ayati A, Tanhaei B, Beiki H, Krivoshapkin P, Krivoshapkina E, Tracey C. Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: A review. Chemosphere 2023;323:138241. [PMID: 36841446 DOI: 10.1016/j.chemosphere.2023.138241] [Reference Citation Analysis]
5 Kuang Y, Xie X, Zhou S, Chen L, Zheng J, Ouyang G. Customized oxygen-rich biochar with ultrahigh microporosity for ideal solid phase microextraction of substituted benzenes. Sci Total Environ 2023;870:161840. [PMID: 36716883 DOI: 10.1016/j.scitotenv.2023.161840] [Reference Citation Analysis]
6 Zhang Y, Feng Y, Ren Z, Zuo R, Zhang T, Li Y, Wang Y, Liu Z, Sun Z, Han Y, Feng L, Aghbashlo M, Tabatabaei M, Pan J. Tree-based machine learning model for visualizing complex relationships between biochar properties and anaerobic digestion. Bioresour Technol 2023;374:128746. [PMID: 36813050 DOI: 10.1016/j.biortech.2023.128746] [Reference Citation Analysis]
7 Xu X, Wang J, Tang Y, Cui X, Hou D, Jia H, Wang S, Guo L, Wang J, Lin A. Mitigating soil salinity stress with titanium gypsum and biochar composite materials: Improvement effects and mechanism. Chemosphere 2023;321:138127. [PMID: 36780996 DOI: 10.1016/j.chemosphere.2023.138127] [Reference Citation Analysis]
8 Alluqmani SM, Alabdallah NM. Exogenous application of carbon nanoparticles alleviates drought stress by regulating water status, chlorophyll fluorescence, osmoprotectants, and antioxidant enzyme activity in Capsicum annumn L. Environ Sci Pollut Res Int 2023. [PMID: 36966248 DOI: 10.1007/s11356-023-26606-0] [Reference Citation Analysis]
9 Bangar SP, Singh A, Ashogbon AO, Bobade H. Ball-milling: A sustainable and green approach for starch modification. Int J Biol Macromol 2023;:124069. [PMID: 36940765 DOI: 10.1016/j.ijbiomac.2023.124069] [Reference Citation Analysis]
10 Jerez F, Ramos PB, Córdoba VE, Ponce MF, Acosta GG, Bavio MA. Yerba mate: From waste to activated carbon for supercapacitors. J Environ Manage 2023;330:117158. [PMID: 36603253 DOI: 10.1016/j.jenvman.2022.117158] [Reference Citation Analysis]
11 Zhang T, Li T, Zhou Z, Li Z, Zhang S, Wang G, Xu X, Pu Y, Jia Y, Liu X, Li Y. Cadmium-resistant phosphate-solubilizing bacteria immobilized on phosphoric acid-ball milling modified biochar enhances soil cadmium passivation and phosphorus bioavailability. Sci Total Environ 2023;877:162812. [PMID: 36924951 DOI: 10.1016/j.scitotenv.2023.162812] [Reference Citation Analysis]
12 Yan N, Hu B, Zheng Z, Lu H, Chen J, Zhang X, Jiang X, Wu Y, Dolfing J, Xu L. Twice-milled magnetic biochar: A recyclable material for efficient removal of methylene blue from wastewater. Bioresour Technol 2023;372:128663. [PMID: 36693504 DOI: 10.1016/j.biortech.2023.128663] [Reference Citation Analysis]
13 Fan Z, Zhou X, Peng Z, Wan S, Gao ZF, Deng S, Tong L, Han W, Chen X. Co-pyrolysis technology for enhancing the functionality of sewage sludge biochar and immobilizing heavy metals. Chemosphere 2023;317:137929. [PMID: 36682641 DOI: 10.1016/j.chemosphere.2023.137929] [Reference Citation Analysis]
14 Maroušek J, Minofar B, Maroušková A, Strunecký O, Gavurová B. Environmental and economic advantages of production and application of digestate biochar. Environmental Technology & Innovation 2023. [DOI: 10.1016/j.eti.2023.103109] [Reference Citation Analysis]
15 Xu X, Sha D, Tian Z, Wu F, Zheng W, Yang L, Xie S, Zhang P, Sun Z. Lithium storage performance and mechanism of nano-sized Ti(2)InC MAX phase. Nanoscale Horiz 2023;8:331-7. [PMID: 36621903 DOI: 10.1039/d2nh00489e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Pratap V, Kumar S, Soni AK, Katiyar R, Dubey A, Abbas SM. Structural design of radar absorber using glass fiber-epoxy composites loaded with BaU hexaferrite for defence applications. Composite Interfaces 2023. [DOI: 10.1080/09276440.2023.2179252] [Reference Citation Analysis]
17 Ai D, Ma H, Meng Y, Wei T, Wang B. Phosphorus recovery and reuse in water bodies with simple ball-milled Ca-loaded biochar. Sci Total Environ 2023;860:160502. [PMID: 36436628 DOI: 10.1016/j.scitotenv.2022.160502] [Reference Citation Analysis]
18 Grabias-Blicharz E, Franus W. A critical review on mechanochemical processing of fly ash and fly ash-derived materials. Sci Total Environ 2023;860:160529. [PMID: 36574561 DOI: 10.1016/j.scitotenv.2022.160529] [Reference Citation Analysis]
19 Kumar M, Sridharan S, Sawarkar AD, Shakeel A, Anerao P, Mannina G, Sharma P, Pandey A. Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review. Sci Total Environ 2023;859:160031. [PMID: 36372172 DOI: 10.1016/j.scitotenv.2022.160031] [Reference Citation Analysis]
20 Chatzimichailidou S, Xanthopoulou M, Tolkou AK, Katsoyiannis IA. Biochar Derived from Rice by-Products for Arsenic and Chromium Removal by Adsorption: A Review. J Compos Sci 2023;7:59. [DOI: 10.3390/jcs7020059] [Reference Citation Analysis]
21 Ding Z, Kumar Awasthi S, Kumar M, Kumar V, Mikhailovich Dregulo A, Yadav V, Sindhu R, Binod P, Sarsaiya S, Pandey A, Taherzadeh MJ, Rathour R, Singh L, Zhang Z, Lian Z, Kumar Awasthi M. A thermo-chemical and biotechnological approaches for bamboo waste recycling and conversion to value added product: Towards a zero-waste biorefinery and circular bioeconomy. Fuel 2023;333:126469. [DOI: 10.1016/j.fuel.2022.126469] [Reference Citation Analysis]
22 Liang X, Liang Y, Zhong S, Liu Z, Li F, Zhang Y, Yin Y, Huang Z. Mechanochemical-assisted reduction of human hair for efficient and selective removal of aqueous Hg(II) to the ppb level. Journal of Molecular Liquids 2023;371:121124. [DOI: 10.1016/j.molliq.2022.121124] [Reference Citation Analysis]
23 Kumar R, Sharma P, Rose PK, Sahoo PK, Bhattacharya P, Pandey A, Kumar M. Co-transport and deposition of fluoride using rice husk-derived biochar in saturated porous media: Effect of solution chemistry and surface properties. Environmental Technology & Innovation 2023. [DOI: 10.1016/j.eti.2023.103056] [Reference Citation Analysis]
24 Cheng X, Tang C, Yan C, Du J, Chen A, Liu X, Jewell L, Zhang Q. Preparation of porous carbon spheres and their application as anode materials for lithium-ion batteries: A review. Materials Today Nano 2023. [DOI: 10.1016/j.mtnano.2023.100321] [Reference Citation Analysis]
25 Majumder S, Sharma P, Singh SP, Nadda AK, Sahu PK, Xia C, Sharma S, Ganguly R, Lam SS, Kim KH. Engineered biochar for the effective sorption and remediation of emerging pollutants in the environment. Journal of Environmental Chemical Engineering 2023. [DOI: 10.1016/j.jece.2023.109590] [Reference Citation Analysis]
26 Stevanović JN, Petrović SP, Tadić NB, Cvetanović K, Silva AG, Radović DV, Sarajlić M. Mechanochemical Synthesis of TiO(2)-CeO(2) Mixed Oxides Utilized as a Screen-Printed Sensing Material for Oxygen Sensor. Sensors (Basel) 2023;23. [PMID: 36772353 DOI: 10.3390/s23031313] [Reference Citation Analysis]
27 Wang L, Deng J, Yang X, Hou R, Hou D. Role of biochar toward carbon neutrality. Carbon Res 2023;2:2. [DOI: 10.1007/s44246-023-00035-7] [Reference Citation Analysis]
28 Jiang M, He L, Niazi NK, Wang H, Gustave W, Vithanage M, Geng K, Shang H, Zhang X, Wang Z. Nanobiochar for the remediation of contaminated soil and water: challenges and opportunities. Biochar 2023;5:2. [DOI: 10.1007/s42773-022-00201-x] [Reference Citation Analysis]
29 Wan Z, Cao Y, Xu Z, Duan X, Xu S, Hou D, Wang S, Tsang DC. Revealing Intrinsic Relations Between Cu Scales and Radical/Nonradical Oxidations to Regulate Nucleophilic/Electrophilic Catalysis. Adv Funct Materials 2023. [DOI: 10.1002/adfm.202212227] [Reference Citation Analysis]
30 Kamal A, Ali M, Farraj DAA, Al-zaidi EM, Khizar M, Aljaaidi RA, Elshikh MS, Munis MFH. Diagnosis and Control of Brown Leaf Spot of Kiwi (Actinidia deliciosa) Using Biochar-Zinc Oxide Nanocomposite (MB-ZnO) as a Non-Toxic Bio-Fungicides. Crystals 2023;13:98. [DOI: 10.3390/cryst13010098] [Reference Citation Analysis]
31 Bélanger N, Prasher S, Dumont M. Tailoring biochar production for use as a reinforcing bio-based filler in rubber composites: a review. Polymer-Plastics Technology and Materials 2023;62:54-75. [DOI: 10.1080/25740881.2022.2089584] [Reference Citation Analysis]
32 Cahyani N, Yunianti AD, Suhasman, Pangestu KTP, Pari G. Characteristics of Bio Pellets from Spent Coffee Grounds and Pinewood Charcoal Based on Composition and Grinding Method. J Korean Wood Sci Technol 2023;51:23-37. [DOI: 10.5658/wood.2023.51.1.23] [Reference Citation Analysis]
33 Li H, Qian L, Liang C, Zheng T, Dong X, Chen M. Enhanced Cr(VI) reduction by zero-valent iron and ferroferric oxide wet ball milling: Synergy of electron storage and electron transfer. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2022.141254] [Reference Citation Analysis]
34 Sheokand M, Jain K, Rana V, Dhaka S, Rana A, Singh KP, Dhaka RK. Nanobiochar-Based Formulations for Sustained Release of Agrochemicals in Precision Agriculture Practices. Handbook of Green and Sustainable Nanotechnology 2023. [DOI: 10.1007/978-3-030-69023-6_109-1] [Reference Citation Analysis]
35 Liu X, Deng L, Chen Z, Ngo HH, Guo W, Wang D. Sustainability assessment of biochar applications. Current Developments in Biotechnology and Bioengineering 2023. [DOI: 10.1016/b978-0-323-91873-2.00005-4] [Reference Citation Analysis]
36 Ye Y, Ngo HH, Guo W, Kang J, Jiang W, Ren Y, Liu D. Biochar for sustainable remediation of soil. Current Developments in Biotechnology and Bioengineering 2023. [DOI: 10.1016/b978-0-323-91873-2.00008-x] [Reference Citation Analysis]
37 Kumar H, Prasad K, Kumar M, Sawarkar AD, Kumar M, Singh L. Pesticide pollution in freshwater: Occurrence, distribution, impact, and remediation. Current Developments in Biotechnology and Bioengineering 2023. [DOI: 10.1016/b978-0-323-91900-5.00010-2] [Reference Citation Analysis]
38 Chauhan S, Shafi T, Dubey BK, Chowdhury S. Biochar-mediated removal of pharmaceutical compounds from aqueous matrices via adsorption. Waste Dispos Sustain Energy 2022;:1-26. [PMID: 36568572 DOI: 10.1007/s42768-022-00118-y] [Reference Citation Analysis]
39 Karthik V, Karuna B, Jeyanthi J, Periyasamy S. Biochar production from Manilkara zapota seeds, activation and characterization for effective removal of Cu2+ ions in polluted drinking water. Biomass Conv Bioref 2022. [DOI: 10.1007/s13399-022-03627-2] [Reference Citation Analysis]
40 Wu Z, Sun L, Dong Y, Xu X, Xiong Z. Contrasting effects of different field-aged biochars on potential methane oxidation between acidic and saline paddy soils. Science of The Total Environment 2022;853:158643. [DOI: 10.1016/j.scitotenv.2022.158643] [Reference Citation Analysis]
41 Sun E, Zhang Y, Xiao Q, Li H, Qu P, Yong C, Wang B, Feng Y, Huang H, Yang L, Hunter C. Formable porous biochar loaded with La-Fe(hydr)oxides/montmorillonite for efficient removal of phosphorus in wastewater: process and mechanisms. Biochar 2022;4. [DOI: 10.1007/s42773-022-00177-8] [Reference Citation Analysis]
42 Zhang S, Cui Z, Zhang M, Zhang Z. Biochar-based functional materials as heterogeneous catalysts for organic reactions. Current Opinion in Green and Sustainable Chemistry 2022;38:100713. [DOI: 10.1016/j.cogsc.2022.100713] [Reference Citation Analysis]
43 Abhishek K, Shrivastava A, Vimal V, Gupta AK, Bhujbal SK, Biswas JK, Singh L, Ghosh P, Pandey A, Sharma P, Kumar M. Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. Science of The Total Environment 2022;853:158562. [DOI: 10.1016/j.scitotenv.2022.158562] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Chen H, Gao Y, Li J, Fang Z, Bolan N, Bhatnagar A, Gao B, Hou D, Wang S, Song H, Yang X, Shaheen SM, Meng J, Chen W, Rinklebe J, Wang H. Engineered biochar for environmental decontamination in aquatic and soil systems: a review. carbon res 2022;1. [DOI: 10.1007/s44246-022-00005-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
45 Ma W, Xu Y, Zhou D, Wang L, Liang X, Sun Y. Development and optimization of high–performance nano–biochar for efficient removal Cd in aqueous: Absorption performance and interaction mechanisms. Chemical Engineering Research and Design 2022. [DOI: 10.1016/j.cherd.2022.11.051] [Reference Citation Analysis]
46 Qi G, Pan Z, Zhang X, Miao X, Xiang W, Gao B. Effect of ball milling with hydrogen peroxide or ammonia hydroxide on sorption performance of volatile organic compounds by biochar from different pyrolysis temperatures. Chemical Engineering Journal 2022;450:138027. [DOI: 10.1016/j.cej.2022.138027] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Zhang Y, He M, Wang L, Yan J, Ma B, Zhu X, Ok YS, Mechtcherine V, Tsang DCW. Biochar as construction materials for achieving carbon neutrality. Biochar 2022;4. [DOI: 10.1007/s42773-022-00182-x] [Reference Citation Analysis]
48 Qu J, Che N, Niu G, Liu L, Li C, Liu Y. Iron/manganese binary metal oxide-biochar nano-composites with high adsorption capacities of Cd2+: Preparation and adsorption mechanisms. Journal of Water Process Engineering 2022. [DOI: 10.1016/j.jwpe.2022.103332] [Reference Citation Analysis]
49 Zhang J, Xie L, Ma Q, Liu Y, Li J, Li Z, Li S, Zhang T. Ball milling enhanced Cr(VI) removal of zero-valent iron biochar composites: Functional groups response and dominant reduction species. Chemosphere 2022. [DOI: 10.1016/j.chemosphere.2022.137174] [Reference Citation Analysis]
50 Abbas S, Manzoor S, Abdullah M, Mahmoud KH, Abid AG, Khan MS, Yasmeen G, Alsubaie AS, Manzoor S, Ashiq MN. One-pot synthesis of reduced graphene oxide-based PANI/MnO2 ternary nanostructure for high-efficiency supercapacitor applications. J Mater Sci: Mater Electron. [DOI: 10.1007/s10854-022-09242-1] [Reference Citation Analysis]
51 Peng Y, Zhang B, Guan CY, Jiang X, Tan J, Li X. Identifying biotic and abiotic processes of reversing biochar-induced soil phosphorus leaching through biochar modification with MgAl layered (hydr)oxides. Sci Total Environ 2022;843:157037. [PMID: 35777556 DOI: 10.1016/j.scitotenv.2022.157037] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
52 Luo D, Wang L, Nan H, Cao Y, Wang H, Kumar TV, Wang C. Phosphorus adsorption by functionalized biochar: a review. Environ Chem Lett. [DOI: 10.1007/s10311-022-01519-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Luo Y, Zheng A, Xue M, Xie Y, Yu S, Yin Z, Xie C, Hong Z, Tan W, Zou W, Dong L, Gao B. Ball-milled Bi2MoO6/biochar composites for synergistic adsorption and photodegradation of methylene blue: Kinetics and mechanisms. Industrial Crops and Products 2022;186:115229. [DOI: 10.1016/j.indcrop.2022.115229] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
54 Chang F, Wei Z, Zhao Z, Qi Y, Liu D. 2D-2D heterostructured composites Bi4O5Br2-SnS2 with boosted photocatalytic NOx abatement. Journal of Industrial and Engineering Chemistry 2022. [DOI: 10.1016/j.jiec.2022.10.015] [Reference Citation Analysis]
55 Tang H, Chen M, Wu P, Faheem M, Feng Q, Lee X, Wang S, Wang B. Engineered biochar effects on soil physicochemical properties and biota communities: A critical review. Chemosphere 2022. [DOI: 10.1016/j.chemosphere.2022.137025] [Reference Citation Analysis]
56 Zhang J, Huang W, Yang D, Xiang J, Chen Y. Removal and recovery of phosphorus from secondary effluent using layered double hydroxide-biochar composites. Science of The Total Environment 2022;844:156802. [DOI: 10.1016/j.scitotenv.2022.156802] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
57 Venkatesh R, Karthi N, Kawin N, Prakash T, Kannan CR, Karthigairajan M, Bobe K, Barik D. Synthesis and Adsorbent Performance of Modified Biochar with Ag/MgO Nanocomposites for Heat Storage Application. Adsorption Science & Technology 2022;2022:1-14. [DOI: 10.1155/2022/7423102] [Reference Citation Analysis]
58 Li Q, Wei G, Duan G, Zhang L, Li Z, Yan F. Valorization of ball-milled waste red mud into heterogeneous catalyst as effective peroxymonosulfate activator for tetracycline hydrochloride degradation. J Environ Manage 2022;324:116301. [PMID: 36179468 DOI: 10.1016/j.jenvman.2022.116301] [Reference Citation Analysis]
59 Yang S, Zhang S, Xu Q, Liu J, Zhong C, Xie Z, Zhao Y. Efficient activation of persulfate by Nickel-supported cherry core biochar composite for removal of bisphenol A. J Environ Manage 2022;324:116305. [PMID: 36166862 DOI: 10.1016/j.jenvman.2022.116305] [Reference Citation Analysis]
60 Sun Q, Yang X, Bao Z, Gao J, Meng J, Han X, Lan Y, Liu Z, Chen W. Responses of microbial necromass carbon and microbial community structure to straw- and straw-derived biochar in brown earth soil of Northeast China. Front Microbiol 2022;13:967746. [DOI: 10.3389/fmicb.2022.967746] [Reference Citation Analysis]
61 Tuan Hoang A, Goldfarb JL, Foley AM, Lichtfouse E, Kumar M, Xiao L, Forruque Ahmed S, Said Z, Luque R, Ga Bui V, Phuong Nguyen X. Production of biochar from crop residues and its application for anaerobic digestion. Bioresour Technol 2022;:127970. [PMID: 36122843 DOI: 10.1016/j.biortech.2022.127970] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
62 Kumar M, Bolan N, Jasemizad T, Padhye LP, Sridharan S, Singh L, Bolan S, O'Connor J, Zhao H, Shaheen SM, Song H, Siddique KHM, Wang H, Kirkham MB, Rinklebe J. Mobilization of contaminants: Potential for soil remediation and unintended consequences. Sci Total Environ 2022;839:156373. [PMID: 35649457 DOI: 10.1016/j.scitotenv.2022.156373] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
63 Liu J, Zhou R, Yu J, Guo L, Li X, Xiao C, Hou H, Chi R, Feng G. Simultaneous removal of lead, manganese, and copper released from the copper tailings by a novel magnetic modified biosorbent. J Environ Manage 2022;322:116157. [PMID: 36070649 DOI: 10.1016/j.jenvman.2022.116157] [Reference Citation Analysis]
64 Jiao Y, Zhang N, He C, Ma X, Liu X, Liu L, Hou T, Wang Z, Pan X. Preparation of sludge-corn stalk biochar and its enhanced anaerobic fermentation. Biochemical Engineering Journal 2022. [DOI: 10.1016/j.bej.2022.108609] [Reference Citation Analysis]
65 Tiwari SK, Bystrzejewski M, De Adhikari A, Huczko A, Wang N. Methods for the conversion of biomass waste into value-added carbon nanomaterials: Recent progress and applications. Progress in Energy and Combustion Science 2022;92:101023. [DOI: 10.1016/j.pecs.2022.101023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
66 Amusat SO, Kebede TG, Nxumalo EN, Dube S, Nindi MM. Incorporating pristine biochar into metal-organic frameworks: Facile green synthesis, characterization, and wastewater remediation. Bioresource Technology Reports 2022;19:101160. [DOI: 10.1016/j.biteb.2022.101160] [Reference Citation Analysis]
67 Kamal A, Haroon U, Manghwar H, Alamer KH, Alsudays IM, Althobaiti AT, Iqbal A, Akbar M, Farhana, Anar M, Nazish M, Chaudhary HJ, Munis MFH. Biological Applications of Ball-Milled Synthesized Biochar-Zinc Oxide Nanocomposite Using Zea mays L. Molecules 2022;27:5333. [PMID: 36014570 DOI: 10.3390/molecules27165333] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Yang W, Li B, Shang J. Aggregation kinetics of biochar nanoparticles in aqueous environment: Interplays of anion type and bovine serum albumin. Science of The Total Environment 2022;833:155148. [DOI: 10.1016/j.scitotenv.2022.155148] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Chen Y, Li L, Wen Q, Yang R, Zhao Y, Rao X, Li J, Xu S, Song H. Oxidative Magnetic Modification of Pristine Biochar Assisted by Ball-Milling for Removal of Methylene Blue and Tetracycline in Aqueous Solution. Sustainability 2022;14:9349. [DOI: 10.3390/su14159349] [Reference Citation Analysis]
70 Fito J, Kefeni KK, Nkambule TTI. The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater. Sci Total Environ 2022;829:154648. [PMID: 35306069 DOI: 10.1016/j.scitotenv.2022.154648] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
71 Lee JTE, Dutta N, Zhang L, Tsui TTH, Lim S, Tio ZK, Lim EY, Sun J, Zhang J, Wang CH, Ok YS, Ahring BK, Tong YW. Bioaugmentation of Methanosarcina thermophila grown on biochar particles during semi-continuous thermophilic food waste anaerobic digestion under two different bioaugmentation regimes. Bioresour Technol 2022;360:127590. [PMID: 35811056 DOI: 10.1016/j.biortech.2022.127590] [Reference Citation Analysis]
72 Song X, Li H, Song J, Chen W, Shi L. Biochar/vermicompost promotes Hybrid Pennisetum plant growth and soil enzyme activity in saline soils. Plant Physiology and Biochemistry 2022;183:96-110. [DOI: 10.1016/j.plaphy.2022.05.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
73 Ke Z, Mei M, Liu J, Du P, Zhang B, Wang T, Chen S, Li J. Deep eutectic solvent assisted facile and efficient synthesis of nitrogen-doped magnetic biochar for hexavalent chromium elimination: Mechanism and performance insights. Journal of Cleaner Production 2022;357:132012. [DOI: 10.1016/j.jclepro.2022.132012] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
74 Ma X, Chen Z, Sun Y, Cai Z, Cheng F, Ma W. Effect on kinetics and energy distribution of riboflavin adsorption from magnetic nano-carbon composites with adsorbed water layer. Separation and Purification Technology 2022;292:120995. [DOI: 10.1016/j.seppur.2022.120995] [Reference Citation Analysis]
75 Yang X, He C, Lin W, Qiu Y, Li P, Chen Y, Huang B, Zheng X. Electrochemical sensors for hydroquinone and catechol based on nano-flake graphite and activated carbon sensitive materials. Synthetic Metals 2022;287:117079. [DOI: 10.1016/j.synthmet.2022.117079] [Reference Citation Analysis]
76 Zhang X, Xiang W, Miao X, Li F, Qi G, Cao C, Ma X, Chen S, Zimmerman AR, Gao B. Microwave biochars produced with activated carbon catalyst: Characterization and sorption of volatile organic compounds (VOCs). Sci Total Environ 2022;827:153996. [PMID: 35189217 DOI: 10.1016/j.scitotenv.2022.153996] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
77 Xu S, Li D, Guo H, Lu H, Qiu M, Yang J, Shen F. Solvent-Free Synthesis of MgO-Modified Biochars for Phosphorus Removal from Wastewater. IJERPH 2022;19:7770. [DOI: 10.3390/ijerph19137770] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
78 Zhang C, Zhitomirsky I. Influence of High Energy Ball Milling and Dispersant on Capacitive Properties of Fe2O3—Carbon Nanotube Composites. J Compos Sci 2022;6:177. [DOI: 10.3390/jcs6060177] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Fan M, Li C, Shao Y, Zhang S, Gholizadeh M, Hu X. Pyrolysis of cellulose: Correlation of hydrophilicity with evolution of functionality of biochar. Sci Total Environ 2022;825:153959. [PMID: 35189205 DOI: 10.1016/j.scitotenv.2022.153959] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Yin Z, Zhang Q, Li S, Cagnetta G, Huang J, Deng S, Yu G. Mechanochemical synthesis of catalysts and reagents for water decontamination: Recent advances and perspective. Sci Total Environ 2022;825:153992. [PMID: 35192815 DOI: 10.1016/j.scitotenv.2022.153992] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
81 Wu W, Liu Z, Azeem M, Guo Z, Li R, Li Y, Peng Y, Ali EF, Wang H, Wang S, Rinklebe J, Shaheen SM, Zhang Z. Hydroxyapatite tailored hierarchical porous biochar composite immobilized Cd(II) and Pb(II) and mitigated their hazardous effects in contaminated water and soil. J Hazard Mater 2022;437:129330. [PMID: 35716571 DOI: 10.1016/j.jhazmat.2022.129330] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
82 Wang G, Kong Y, Yang Y, Ma R, Shen Y, Li G, Yuan J. Superphosphate, biochar, and a microbial inoculum regulate phytotoxicity and humification during chicken manure composting. Sci Total Environ 2022;824:153958. [PMID: 35183623 DOI: 10.1016/j.scitotenv.2022.153958] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
83 Luo X, Asefa T, Qiu R, Su C, Cui L, Huang Z. Robust Adsorption and Persulfate-Based Degradation of Doxycycline by Oxygen Vacancy-Rich Copper-Iron Oxides Prepared through a Mechanochemical Route. ACS EST Water 2022;2:1031-1045. [DOI: 10.1021/acsestwater.2c00017] [Reference Citation Analysis]
84 Lyu P, Li L, Huang X, Wang G, Zhu C. Pre-magnetic bamboo biochar cross-linked CaMgAl layered double-hydroxide composite: High-efficiency removal of As(III) and Cd(II) from aqueous solutions and insight into the mechanism of simultaneous purification. Sci Total Environ 2022;823:153743. [PMID: 35151751 DOI: 10.1016/j.scitotenv.2022.153743] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
85 Qin X, Ola O, Zhao J, Yang Z, Tiwari SK, Wang N, Zhu Y. Recent Progress in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction. Nanomaterials (Basel) 2022;12:1806. [PMID: 35683662 DOI: 10.3390/nano12111806] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
86 Cavali M, Libardi Junior N, Mohedano RA, Belli Filho P, da Costa RHR, de Castilhos Junior AB. Biochar and hydrochar in the context of anaerobic digestion for a circular approach: An overview. Sci Total Environ 2022;822:153614. [PMID: 35124030 DOI: 10.1016/j.scitotenv.2022.153614] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
87 Ai D, Wei T, Meng Y, Chen X, Wang B. Ball milling sulfur-doped nano zero-valent iron @biochar composite for the efficient removal of phosphorus from water: Performance and mechanisms. Bioresour Technol 2022;:127316. [PMID: 35597516 DOI: 10.1016/j.biortech.2022.127316] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
88 González-pernas FM, Grajera-antolín C, García-cámara O, González-lucas M, Martín MT, González-egido S, Aguirre JL. Effects of Biochar on Biointensive Horticultural Crops and Its Economic Viability in the Mediterranean Climate. Energies 2022;15:3407. [DOI: 10.3390/en15093407] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
89 Gao Y, Wang L, Wang F, Sun Y, Xu Y, Li J, Wang L, Lu Z. Ball milling combined with activation preparation of honeycomb-like porous carbon derived from peony seed shell for high-performance supercapacitors. J Mater Sci: Mater Electron. [DOI: 10.1007/s10854-022-08244-3] [Reference Citation Analysis]
90 Huang Z, Yi Y, Zhang N, Tsang PE, Fang Z. Removal of fluconazole from aqueous solution by magnetic biochar treated by ball milling: adsorption performance and mechanism. Environ Sci Pollut Res Int 2022;29:33335-44. [PMID: 35022965 DOI: 10.1007/s11356-021-17964-8] [Reference Citation Analysis]
91 Dong D, Zhang Y, Shan M, Yin T, Wang T, Wang J, Gao W. Application of mechanochemical technology for removal/solidification pollutant and preparation/recycling energy storage materials. Journal of Cleaner Production 2022;348:131351. [DOI: 10.1016/j.jclepro.2022.131351] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Wang Y, Chang F, Wei Z, Yang C, Liu D, Yan T, Pang Q, Chen S. Photocatalytic NO removal by WO 3 samples prepared via a ball milling treatment under different parameters. Inorganic and Nano-Metal Chemistry. [DOI: 10.1080/24701556.2022.2068586] [Reference Citation Analysis]
93 Ottani F, Parenti M, Pedrazzi S, Moscatelli G, Allesina G. Impacts of gasification biochar and its particle size on the thermal behavior of organic waste co-composting process. Sci Total Environ 2022;817:153022. [PMID: 35031371 DOI: 10.1016/j.scitotenv.2022.153022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
94 Balaji N, Natrayan L, Kaliappan S, Patil PP, Sivakumar NS. Annealed peanut shell biochar as potential reinforcement for aloe vera fiber-epoxy biocomposite: mechanical, thermal conductivity, and dielectric properties. Biomass Conv Bioref . [DOI: 10.1007/s13399-022-02650-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
95 Yang X, Liu S, Liang T, Yan X, Zhang Y, Zhou Y, Sarkar B, Ok YS. Ball-milled magnetite for efficient arsenic decontamination: Insights into oxidation-adsorption mechanism. J Hazard Mater 2022;427:128117. [PMID: 34974405 DOI: 10.1016/j.jhazmat.2021.128117] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
96 Awasthi MK. Engineered biochar: A multifunctional material for energy and environment. Environ Pollut 2022;298:118831. [PMID: 35032603 DOI: 10.1016/j.envpol.2022.118831] [Cited by in Crossref: 35] [Cited by in F6Publishing: 23] [Article Influence: 35.0] [Reference Citation Analysis]
97 Bombazaro JL, Bernardin AM. Improving plasticity of kaolins by high-energy milling for use in porcelain tile compositions. Open Ceramics 2022. [DOI: 10.1016/j.oceram.2022.100256] [Reference Citation Analysis]
98 Liu C, Zhang H. Modified-biochar adsorbents (MBAs) for heavy-metal ions adsorption: A critical review. Journal of Environmental Chemical Engineering 2022;10:107393. [DOI: 10.1016/j.jece.2022.107393] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
99 Liao X, Xie H, Liao B, Hou S, Yu Y, Fan X. Ball milling induced strong polarization electric fields in Cu3B2O6 crystals for high efficiency piezocatalysis. Nano Energy 2022;94:106890. [DOI: 10.1016/j.nanoen.2021.106890] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
100 Hilal AM, Asiri MM, Al-otaibi S, Nafie FM, Al-rasheed A, Rizwanullah M, Yaseen I, Motwakel A, Modigunta JKR. Nonlinear Autoregressive Neural Network for Antimicrobial Waste Water Treatment. Adsorption Science & Technology 2022;2022:1-9. [DOI: 10.1155/2022/6292200] [Reference Citation Analysis]
101 Rathour R, Kumar H, Prasad K, Anerao P, Kumar M, Kapley A, Pandey A, Kumar Awasthi M, Singh L. Multifunctional applications of bamboo crop beyond environmental management: an Indian prospective. Bioengineered 2022;13:8893-914. [PMID: 35333141 DOI: 10.1080/21655979.2022.2056689] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
102 Luo Y, Wang Y, Zhu Y, Xue M, Zheng A, Han Y, Yin Z, Hong Z, Xie C, Li X, Lei S, Gao B. Ball-milled bismuth oxychloride/biochar nanocomposites with rich oxygen vacancies for reactive red-120 adsorption in aqueous solution. Biochar 2022;4. [DOI: 10.1007/s42773-022-00147-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
103 Tangestani A, Hadianfard MJ, Tayebi L, Vashaee D. Wear and Electrochemical Behavior of High-Nitrogen, Nickel-Free Austenitic Stainless Steel Produced by Hot Powder Forging. J of Materi Eng and Perform. [DOI: 10.1007/s11665-022-06779-4] [Reference Citation Analysis]
104 Zhang P, Bing X, Jiao L, Xiao H, Li B, Sun H. Amelioration effects of coastal saline-alkali soil by ball-milled red phosphorus-loaded biochar. Chemical Engineering Journal 2022;431:133904. [DOI: 10.1016/j.cej.2021.133904] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
105 Awasthi SK, Kumar M, Sarsaiya S, Ahluwalia V, Chen H, Kaur G, Sirohi R, Sindhu R, Binod P, Pandey A, Rathour R, Kumar S, Singh L, Zhang Z, Taherzadeh MJ, Awasthi MK. Multi-criteria research lines on livestock manure biorefinery development towards a circular economy: From the perspective of a life cycle assessment and business models strategies. Journal of Cleaner Production 2022;341:130862. [DOI: 10.1016/j.jclepro.2022.130862] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 22.0] [Reference Citation Analysis]
106 Monga D, Shetti NP, Basu S, Raghava Reddy K, Badawi M, Bonilla-petriciolet A, Aminabhavi TM. Engineered biochar: A way forward to environmental remediation. Fuel 2022;311:122510. [DOI: 10.1016/j.fuel.2021.122510] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
107 Rajput VD, Minkina T, Ahmed B, Singh VK, Mandzhieva S, Sushkova S, Bauer T, Verma KK, Shan S, van Hullebusch ED, Wang B. Nano-biochar: A novel solution for sustainable agriculture and environmental remediation. Environ Res 2022;210:112891. [PMID: 35183514 DOI: 10.1016/j.envres.2022.112891] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
108 Samoraj M, Mironiuk M, Witek-Krowiak A, Izydorczyk G, Skrzypczak D, Mikula K, Baśladyńska S, Moustakas K, Chojnacka K. Biochar in environmental friendly fertilizers - Prospects of development products and technologies. Chemosphere 2022;:133975. [PMID: 35182533 DOI: 10.1016/j.chemosphere.2022.133975] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
109 Quan G, Sui F, Wang M, Cui L, Wang H, Xiang W, Li G, Yan J. Mechanochemical modification of biochar-attapulgite nanocomposites for cadmium removal: Performance and mechanisms. Biochemical Engineering Journal 2022;179:108332. [DOI: 10.1016/j.bej.2022.108332] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
110 Li H, Cui S, Tan Y, Peng Y, Gao X, Yang X, Ma Y, He X, Fan B, Yang S, Chen Q. Synergistic effects of ball-milled biochar-supported exfoliated LDHs on phosphate adsorption: Insights into role of fine biochar support. Environ Pollut 2022;294:118592. [PMID: 34856246 DOI: 10.1016/j.envpol.2021.118592] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
111 Kamal A, Saleem MH, Alshaya H, Okla MK, Chaudhary HJ, Munis MFH. Ball-milled synthesis of maize biochar-ZnO nanocomposite (MB-ZnO) and estimation of its photocatalyticability against different organic and inorganic pollutants. Journal of Saudi Chemical Society 2022. [DOI: 10.1016/j.jscs.2022.101445] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
112 Liu T, Lawluvy Y, Shi Y, Ighalo JO, He Y, Zhang Y, Yap P. Adsorption of cadmium and lead from aqueous solution using modified biochar: A review. Journal of Environmental Chemical Engineering 2022;10:106502. [DOI: 10.1016/j.jece.2021.106502] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 21.0] [Reference Citation Analysis]
113 Du Z, Wang Q, Du Y, Xu Q, Wang D, Zhang W. Obtaining high-value nitrogen-containing carbon nanosheets with ultrahigh surface area from waste sludge for energy storage and wastewater treatment. Sci Total Environ 2022;805:150353. [PMID: 34818788 DOI: 10.1016/j.scitotenv.2021.150353] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
114 Hamza MA, Althobaiti MM, Al-wesabi FN, Alabdan R, Mahgoub H, Hilal AM, Motwakel A, Al Duhayyim M, R L. Gaussian Process Regression and Machine Learning Methods for Carbon-Based Material Adsorption. Adsorption Science & Technology 2022;2022:1-7. [DOI: 10.1155/2022/3901608] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Liu XL, Dong C, Leu SY, Fang Z, Miao ZD. Efficient saccharification of wheat straw pretreated by solid particle-assisted ball milling with waste washing liquor recycling. Bioresour Technol 2022;:126721. [PMID: 35051568 DOI: 10.1016/j.biortech.2022.126721] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
116 Chen L, Li X, Peng Y, Xiang P, Zhou Y, Yao B, Zhou Y, Sun C. Co-application of biochar and organic fertilizer promotes the yield and quality of red pitaya (Hylocereus polyrhizus) by improving soil properties. Chemosphere 2022;:133619. [PMID: 35041821 DOI: 10.1016/j.chemosphere.2022.133619] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
117 Zhao L, Zhang H, Zhao B, Lyu H. Activation of peroxydisulfate by ball-milled α-FeOOH/biochar composite for phenol removal: Component contribution and internal mechanisms. Environ Pollut 2022;293:118596. [PMID: 34856245 DOI: 10.1016/j.envpol.2021.118596] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
118 Pratap T, Chaubey AK, Patel M, Mlsna TE, Pittman CU, Mohan D. Nanobiochar for aqueous contaminant removal. Sustainable Biochar for Water and Wastewater Treatment 2022. [DOI: 10.1016/b978-0-12-822225-6.00021-x] [Reference Citation Analysis]
119 Joshi S, Ramola S, Singh B, Anerao P, Singh L. Waste to Wealth: Types of Raw Materials for Preparation of Biochar and Their Characteristics. Engineered Biochar 2022. [DOI: 10.1007/978-981-19-2488-0_2] [Reference Citation Analysis]
120 Liu S, Lai C, Li B, Liu X, Zhou X, Zhang C, Qin L, Li L, Zhang M, Yi H, Fu Y, Yan H, Chen L. Heteroatom doping in metal-free carbonaceous materials for the enhancement of persulfate activation. Chemical Engineering Journal 2022;427:131655. [DOI: 10.1016/j.cej.2021.131655] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 39.0] [Reference Citation Analysis]
121 Xiong X, He M, Dutta S, Tsang DC. Biochar and sustainable development goals. Biochar in Agriculture for Achieving Sustainable Development Goals 2022. [DOI: 10.1016/b978-0-323-85343-9.00027-6] [Reference Citation Analysis]
122 Anerao P, Salwatkar G, Kumar M, Pandey A, Singh L. Physical Treatment for Biochar Modification: Opportunities, Limitations and Advantages. Engineered Biochar 2022. [DOI: 10.1007/978-981-19-2488-0_4] [Reference Citation Analysis]
123 Chen X, Wu W, Han L, Gu M, Li J, Chen M. Carbon stability and mobility of ball milled lignin- and cellulose-rich biochar colloids. Sci Total Environ 2022;802:149759. [PMID: 34464793 DOI: 10.1016/j.scitotenv.2021.149759] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
124 Yan S, Ren T, Wan Mahari WA, Feng H, Xu C, Yun F, Waiho K, Wei Y, Lam SS, Liu G. Soil carbon supplementation: Improvement of root-surrounding soil bacterial communities, sugar and starch content in tobacco (N. tabacum). Sci Total Environ 2021;802:149835. [PMID: 34461468 DOI: 10.1016/j.scitotenv.2021.149835] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
125 Prasad K, Kumar H, Singh L, Sawarkar AD, Kumar M, Kumar S. Phytocapping technology for sustainable management of contaminated sites: case studies, challenges, and future prospects. Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water 2022. [DOI: 10.1016/b978-0-323-85763-5.00041-6] [Reference Citation Analysis]
126 Harun-ur-rashid M, Foyez T, Jahan I, Pal K, Imran AB. Rapid diagnosis of COVID-19 via nano-biosensor-implemented biomedical utilization: a systematic review. RSC Adv 2022;12:9445-65. [DOI: 10.1039/d2ra01293f] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
127 Iwasaki T. Environmentally Friendly Green Synthesis of Fine Particles by Dry Mechanical Processes Toward SDGs: A Review. KONA. [DOI: 10.14356/kona.2023014] [Reference Citation Analysis]
128 Anerao P, Kaware R, Khedikar AK, Kumar M, Singh L. Phytoremediation of persistent organic pollutants: Concept challenges and perspectives. Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water 2022. [DOI: 10.1016/b978-0-323-85763-5.00018-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
129 Li C, Wang X, Yang A, Chen P, Zhao T, Liu F. Polyethyleneimine-Modified Amorphous Silica for the Selective Adsorption of CO2/N2 at High Temperatures. ACS Omega 2021;6:35389-97. [PMID: 34984270 DOI: 10.1021/acsomega.1c04743] [Reference Citation Analysis]
130 Kansara K, Bolan S, Radhakrishnan D, Palanisami T, Al-Muhtaseb AH, Bolan N, Vinu A, Kumar A, Karakoti A. A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment. Environ Pollut 2021;296:118726. [PMID: 34953948 DOI: 10.1016/j.envpol.2021.118726] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
131 Alves BSQ, Fernandes LA, Southard RJ. Biochar-cadmium retention and its effects after aging with Hydrogen Peroxide (H2O2). Heliyon 2021;7:e08476. [PMID: 34926850 DOI: 10.1016/j.heliyon.2021.e08476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
132 Liang W, Wang G, Peng C, Tan J, Wan J, Sun P, Li Q, Ji X, Zhang Q, Wu Y, Zhang W. Recent advances of carbon-based nano zero valent iron for heavy metals remediation in soil and water: A critical review. J Hazard Mater 2021;426:127993. [PMID: 34920223 DOI: 10.1016/j.jhazmat.2021.127993] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 8.5] [Reference Citation Analysis]
133 Arun A, Malrautu P, Laha A, Luo H, Ramakrishna S. Collagen Nanoparticles in Drug Delivery Systems and Tissue Engineering. Applied Sciences 2021;11:11369. [DOI: 10.3390/app112311369] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
134 Bai SH, Omidvar N, Gallart M, Kämper W, Tahmasbian I, Farrar MB, Singh K, Zhou G, Muqadass B, Xu CY, Koech R, Li Y, Nguyen TTN, van Zwieten L. Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis. Sci Total Environ 2021;808:152073. [PMID: 34863750 DOI: 10.1016/j.scitotenv.2021.152073] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
135 Greenough S, Dumont M, Prasher S. The physicochemical properties of biochar and its applicability as a filler in rubber composites: A review. Materials Today Communications 2021;29:102912. [DOI: 10.1016/j.mtcomm.2021.102912] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
136 Bao R, Fu D, Fan Z, Peng X, Peng L. Aging of microplastics and their role as vector for copper in aqueous solution. Gondwana Research 2021. [DOI: 10.1016/j.gr.2021.12.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
137 Liu Y, Li J, Jiao X, Li H, Hu T, Jiang H, Mahmoud A. Effects of biochar on water quality and rice productivity under straw returning condition in a rice-wheat rotation region. Sci Total Environ 2021;:152063. [PMID: 34856286 DOI: 10.1016/j.scitotenv.2021.152063] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
138 Giri BS, Sonwani RK, Varjani S, Chaurasia D, Varadavenkatesan T, Chaturvedi P, Yadav S, Katiyar V, Singh RS, Pandey A. Highly efficient bio-adsorption of Malachite green using Chinese Fan-Palm Biochar (Livistona chinensis). Chemosphere 2022;287:132282. [PMID: 34826941 DOI: 10.1016/j.chemosphere.2021.132282] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
139 Wan Mahari WA, Waiho K, Fazhan H, Necibi MC, Hafsa J, Mrid RB, Fal S, El Arroussi H, Peng W, Tabatabaei M, Aghbashlo M, Almomani F, Lam SS, Sillanpää M. Progress in valorisation of agriculture, aquaculture and shellfish biomass into biochemicals and biomaterials towards sustainable bioeconomy. Chemosphere 2021;:133036. [PMID: 34822867 DOI: 10.1016/j.chemosphere.2021.133036] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
140 Luo X, You Y, Zhong M, Zhao L, Liu Y, Qiu R, Huang Z. Green synthesis of manganese-cobalt-tungsten composite oxides for degradation of doxycycline via efficient activation of peroxymonosulfate. J Hazard Mater 2021;:127803. [PMID: 34862104 DOI: 10.1016/j.jhazmat.2021.127803] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
141 Toksha B, Sonawale VAM, Vanarase A, Bornare D, Tonde S, Hazra C, Kundu D, Satdive A, Tayde S, Chatterjee A. Nanofertilizers: A review on synthesis and impact of their use on crop yield and environment. Environmental Technology & Innovation 2021;24:101986. [DOI: 10.1016/j.eti.2021.101986] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
142 Talukder N, Wang Y, Nunna BB, Lee ES. Nitrogen-doped graphene nanomaterials for electrochemical catalysis/reactions: A review on chemical structures and stability. Carbon 2021;185:198-214. [DOI: 10.1016/j.carbon.2021.09.025] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
143 Vincent S, Kandasubramanian B. Cellulose nanocrystals from agricultural resources: Extraction and functionalisation. European Polymer Journal 2021;160:110789. [DOI: 10.1016/j.eurpolymj.2021.110789] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
144 Sun Y, Lyu H, Cheng Z, Wang Y, Tang J. Insight into the mechanisms of ball-milled biochar addition on soil tetracycline degradation enhancement: Physicochemical properties and microbial community structure. Chemosphere 2021;:132691. [PMID: 34755608 DOI: 10.1016/j.chemosphere.2021.132691] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
145 Décima MA, Marzeddu S, Barchiesi M, Di Marcantonio C, Chiavola A, Boni MR. A Review on the Removal of Carbamazepine from Aqueous Solution by Using Activated Carbon and Biochar. Sustainability 2021;13:11760. [DOI: 10.3390/su132111760] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
146 Wan Mahari WA, Waiho K, Azwar E, Fazhan H, Peng W, Ishak SD, Tabatabaei M, Yek PNY, Almomani F, Aghbashlo M, Lam SS. A state-of-the-art review on producing engineered biochar from shellfish waste and its application in aquaculture wastewater treatment. Chemosphere 2021;288:132559. [PMID: 34655643 DOI: 10.1016/j.chemosphere.2021.132559] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
147 Zhang X, Ren K, Wang Y, Shen B, Shen F, Shang Y. Solvent-Free Synthesis of MnOx-FeOx/Biochar for Hg 0 and o -Xylene Removal from Flue Gas. Energy Fuels 2021;35:15969-77. [DOI: 10.1021/acs.energyfuels.1c02508] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
148 Gao X, Hassan I, Peng Y, Huo S, Ling L. Behaviors and influencing factors of the heavy metals adsorption onto microplastics: A review. Journal of Cleaner Production 2021;319:128777. [DOI: 10.1016/j.jclepro.2021.128777] [Cited by in Crossref: 39] [Cited by in F6Publishing: 45] [Article Influence: 19.5] [Reference Citation Analysis]
149 Sun Y, Yang Y, Shi X, Suo G, Lu S, Chen Z. Self-standing and high-performance B4C/Sn/acetylene black@reduced graphene oxide films as sodium-ion half/full battery anodes. Applied Materials Today 2021;24:101137. [DOI: 10.1016/j.apmt.2021.101137] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
150 Lopez-tenllado FJ, Motta IL, Hill JM. Modification of biochar with high-energy ball milling: Development of porosity and surface acid functional groups. Bioresource Technology Reports 2021;15:100704. [DOI: 10.1016/j.biteb.2021.100704] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
151 Fuke P, T MM, Kumar M, Sawarkar AD, Pandey A, Singh L. Role of microbial diversity to influence the growth and environmental remediation capacity of bamboo: A review. Industrial Crops and Products 2021;167:113567. [DOI: 10.1016/j.indcrop.2021.113567] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 12.5] [Reference Citation Analysis]
152 Loy ACM, Alhazmi H, Lock SSM, Yiin CL, Cheah KW, Chin BLF, How BS, Yusup S. Life-cycle assessment of hydrogen production via catalytic gasification of wheat straw in the presence of straw derived biochar catalyst. Bioresour Technol 2021;341:125796. [PMID: 34454232 DOI: 10.1016/j.biortech.2021.125796] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
153 Lee XJ, Ong HC, Ooi J, Yu KL, Tham TC, Chen WH, Ok YS. Engineered macroalgal and microalgal adsorbents: Synthesis routes and adsorptive performance on hazardous water contaminants. J Hazard Mater 2021;423:126921. [PMID: 34523506 DOI: 10.1016/j.jhazmat.2021.126921] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
154 Bhattarai DP, Pant B, Acharya J, Park M, Ojha GP. Recent Progress in Metal-Organic Framework-Derived Nanostructures in the Removal of Volatile Organic Compounds. Molecules 2021;26:4948. [PMID: 34443537 DOI: 10.3390/molecules26164948] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
155 Li S, Ma X, Ma Z, Dong X, Wei Z, Liu X, zhu L. Mg/Al-layered double hydroxide modified biochar for simultaneous removal phosphate and nitrate from aqueous solution. Environmental Technology & Innovation 2021;23:101771. [DOI: 10.1016/j.eti.2021.101771] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
156 İçin K, Öztürk S, Çakil DD, Sünbül SE. Mechanochemical synthesis of SrFe12O19 from recycled mill scale: Effect of synthesis time on phase formation and magnetic properties. Journal of Alloys and Compounds 2021;873:159787. [DOI: 10.1016/j.jallcom.2021.159787] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
157 Cui S, Zhang R, Peng Y, Gao X, Li Z, Fan B, Guan C, Beiyuan J, Zhou Y, Liu J, Chen Q, Sheng J, Guo L. New insights into ball milling effects on MgAl-LDHs exfoliation on biochar support: A case study for cadmium adsorption. Journal of Hazardous Materials 2021;416:126258. [DOI: 10.1016/j.jhazmat.2021.126258] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
158 Duan Y, Zhang L, Yang J, Zhang Z, Awasthi MK, Li H. Insight to bacteria community response of organic management in apple orchard-bagasse fertilizer combined with biochar. Chemosphere 2021;286:131693. [PMID: 34358886 DOI: 10.1016/j.chemosphere.2021.131693] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
159 de Freitas FP, Carvalho AMML, Carneiro ACO, de Magalhães MA, Xisto MF, Canal WD. Adsorption of neutral red dye by chitosan and activated carbon composite films. Heliyon 2021;7:e07629. [PMID: 34381895 DOI: 10.1016/j.heliyon.2021.e07629] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
160 Kumar M, Bolan NS, Hoang SA, Sawarkar AD, Jasemizad T, Gao B, Keerthanan S, Padhye LP, Singh L, Kumar S, Vithanage M, Li Y, Zhang M, Kirkham MB, Vinu A, Rinklebe J. Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade? J Hazard Mater 2021;420:126534. [PMID: 34280720 DOI: 10.1016/j.jhazmat.2021.126534] [Cited by in Crossref: 51] [Cited by in F6Publishing: 55] [Article Influence: 25.5] [Reference Citation Analysis]
161 Kumar M, Dutta S, You S, Luo G, Zhang S, Show PL, Sawarkar AD, Singh L, Tsang DC. A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. Journal of Cleaner Production 2021;305:127143. [DOI: 10.1016/j.jclepro.2021.127143] [Cited by in Crossref: 124] [Cited by in F6Publishing: 130] [Article Influence: 62.0] [Reference Citation Analysis]
162 Dai L, Lu Q, Zhou H, Shen F, Liu Z, Zhu W, Huang H. Tuning oxygenated functional groups on biochar for water pollution control: A critical review. J Hazard Mater 2021;420:126547. [PMID: 34246863 DOI: 10.1016/j.jhazmat.2021.126547] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 14.0] [Reference Citation Analysis]
163 Raj A, Yadav A, Arya S, Sirohi R, Kumar S, Rawat AP, Thakur RS, Patel DK, Bahadur L, Pandey A. Preparation, characterization and agri applications of biochar produced by pyrolysis of sewage sludge at different temperatures. Sci Total Environ 2021;795:148722. [PMID: 34247088 DOI: 10.1016/j.scitotenv.2021.148722] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
164 Huang D, Bai X, Wang Q, Xu Q. Validation and optimization of key biochar properties through iron modification for improving the methane oxidation capacity of landfill cover soil. Sci Total Environ 2021;793:148551. [PMID: 34174617 DOI: 10.1016/j.scitotenv.2021.148551] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
165 Alluqmani SM, Loulou M, Ouerfelli J, Alshahrie A, Salah N. Annealing effect on structural and optical properties of nanostructured carbon of oil fly ash modified titania thin-film. Results in Physics 2021;25:104335. [DOI: 10.1016/j.rinp.2021.104335] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
166 Amusat SO, Kebede TG, Dube S, Nindi MM. Ball-milling synthesis of biochar and biochar–based nanocomposites and prospects for removal of emerging contaminants: A review. Journal of Water Process Engineering 2021;41:101993. [DOI: 10.1016/j.jwpe.2021.101993] [Cited by in Crossref: 33] [Cited by in F6Publishing: 40] [Article Influence: 16.5] [Reference Citation Analysis]
167 Xu X, Xu Z, Huang J, Gao B, Zhao L, Qiu H, Cao X. Sorption of reactive red by biochars ball milled in different atmospheres: Co-effect of surface morphology and functional groups. Chemical Engineering Journal 2021;413:127468. [DOI: 10.1016/j.cej.2020.127468] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
168 Ren X, Tang J, Wang L, Sun H. Combined Effects of Microplastics and Biochar on the Removal of Polycyclic Aromatic Hydrocarbons and Phthalate Esters and Its Potential Microbial Ecological Mechanism. Front Microbiol 2021;12:647766. [PMID: 33995304 DOI: 10.3389/fmicb.2021.647766] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
169 Jeyasubramanian K, Thangagiri B, Sakthivel A, Dhaveethu Raja J, Seenivasan S, Vallinayagam P, Madhavan D, Malathi Devi S, Rathika B. A complete review on biochar: Production, property, multifaceted applications, interaction mechanism and computational approach. Fuel 2021;292:120243. [DOI: 10.1016/j.fuel.2021.120243] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 18.5] [Reference Citation Analysis]
170 Li J, Liu Y, Ren X, Dong W, Chen H, Cai T, Zeng W, Li W, Tang L. Soybean residue based biochar prepared by ball milling assisted alkali activation to activate peroxydisulfate for the degradation of tetracycline. J Colloid Interface Sci 2021;599:631-41. [PMID: 33979745 DOI: 10.1016/j.jcis.2021.04.074] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
171 Ahmed W, Mehmood S, Núñez-Delgado A, Ali S, Qaswar M, Shakoor A, Mahmood M, Chen DY. Enhanced adsorption of aqueous Pb(II) by modified biochar produced through pyrolysis of watermelon seeds. Sci Total Environ 2021;784:147136. [PMID: 33892324 DOI: 10.1016/j.scitotenv.2021.147136] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 16.5] [Reference Citation Analysis]
172 Karpagam R, Jawaharraj K, Gnanam R. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy. Science of The Total Environment 2021;766:144236. [DOI: 10.1016/j.scitotenv.2020.144236] [Cited by in Crossref: 40] [Cited by in F6Publishing: 45] [Article Influence: 20.0] [Reference Citation Analysis]
173 Su P, Gao X, Zhang J, Djellabi R, Yang B, Wu Q, Wen Z. Enhancing the adsorption function of biochar by mechanochemical graphitization for organic pollutant removal. Front Environ Sci Eng 2021;15. [DOI: 10.1007/s11783-021-1418-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
174 Yu F, Tian F, Zou H, Ye Z, Peng C, Huang J, Zheng Y, Zhang Y, Yang Y, Wei X, Gao B. ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue. J Hazard Mater 2021;415:125511. [PMID: 33740715 DOI: 10.1016/j.jhazmat.2021.125511] [Cited by in Crossref: 48] [Cited by in F6Publishing: 56] [Article Influence: 24.0] [Reference Citation Analysis]
175 Zhuang Z, Wang L, Tang J. Efficient removal of volatile organic compound by ball-milled biochars from different preparing conditions. Journal of Hazardous Materials 2021;406:124676. [DOI: 10.1016/j.jhazmat.2020.124676] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 13.0] [Reference Citation Analysis]
176 Lo S, Fauzi MB. Current Update of Collagen Nanomaterials-Fabrication, Characterisation and Its Applications: A Review. Pharmaceutics 2021;13:316. [PMID: 33670973 DOI: 10.3390/pharmaceutics13030316] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 14.5] [Reference Citation Analysis]
177 Zahed MA, Salehi S, Madadi R, Hejabi F. Biochar as a sustainable product for remediation of petroleum contaminated soil. Current Research in Green and Sustainable Chemistry 2021;4:100055. [DOI: 10.1016/j.crgsc.2021.100055] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
178 Pratap T, Patel M, Pittman CU, Nguyen TA, Mohan D. Nanobiochar: A sustainable solution for agricultural and environmental applications. Nanomaterials for Soil Remediation 2021. [DOI: 10.1016/b978-0-12-822891-3.00028-1] [Reference Citation Analysis]
179 Sheng Y, Lam SS, Wu Y, Ge S, Wu J, Cai L, Huang Z, Le QV, Sonne C, Xia C. Enzymatic conversion of pretreated lignocellulosic biomass: A review on influence of structural changes of lignin. Bioresour Technol 2021;324:124631. [PMID: 33454445 DOI: 10.1016/j.biortech.2020.124631] [Cited by in Crossref: 48] [Cited by in F6Publishing: 57] [Article Influence: 16.0] [Reference Citation Analysis]
180 Leng L, Xiong Q, Yang L, Li H, Zhou Y, Zhang W, Jiang S, Li H, Huang H. An overview on engineering the surface area and porosity of biochar. Sci Total Environ 2021;763:144204. [PMID: 33385838 DOI: 10.1016/j.scitotenv.2020.144204] [Cited by in Crossref: 153] [Cited by in F6Publishing: 170] [Article Influence: 51.0] [Reference Citation Analysis]
181 Li S, Chan CY, Sharbatmaleki M, Trejo H, Delagah S. Engineered Biochar Production and Its Potential Benefits in a Closed-Loop Water-Reuse Agriculture System. Water 2020;12:2847. [DOI: 10.3390/w12102847] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
182 Liang L, Wang F, Rong M, Wang Z, Yang S, Wang J, Zhou H. Recent Advances on Preparation Method of Ti-Based Hydrogen Storage Alloy. MSCE 2020;08:18-38. [DOI: 10.4236/msce.2020.812003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]