BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kambeitz J, Cabral C, Sacchet MD, Gotlib IH, Zahn R, Serpa MH, Walter M, Falkai P, Koutsouleris N. Detecting Neuroimaging Biomarkers for Depression: A Meta-analysis of Multivariate Pattern Recognition Studies. Biol Psychiatry 2017;82:330-8. [PMID: 28110823 DOI: 10.1016/j.biopsych.2016.10.028] [Cited by in Crossref: 81] [Cited by in F6Publishing: 67] [Article Influence: 13.5] [Reference Citation Analysis]
Number Citing Articles
1 Mousavian M, Chen J, Traylor Z, Greening S. Depression detection from sMRI and rs-fMRI images using machine learning. J Intell Inf Syst 2021;57:395-418. [DOI: 10.1007/s10844-021-00653-w] [Reference Citation Analysis]
2 Najafpour Z, Fatemi A, Goudarzi Z, Goudarzi R, Shayanfard K, Noorizadeh F. Cost-effectiveness of neuroimaging technologies in management of psychiatric and insomnia disorders: A meta-analysis and prospective cost analysis. J Neuroradiol 2021;48:348-58. [PMID: 33383065 DOI: 10.1016/j.neurad.2020.12.003] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 [DOI: 10.1101/2020.05.19.105148] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 MacQueen GM, Hassel S, Arnott SR, Jean A, Bowie CR, Bray SL, Davis AD, Downar J, Foster JA, Frey BN, Goldstein BI, Hall GB, Harkness KL, Harris J, Lam RW, Lebel C, Milev R, Müller DJ, Parikh SV, Rizvi S, Rotzinger S, Sharma GB, Soares CN, Turecki G, Vila-Rodriguez F, Yu J, Zamyadi M, Strother SC, Kennedy SH; CAN-BIND Investigator Team. The Canadian Biomarker Integration Network in Depression (CAN-BIND): magnetic resonance imaging protocols. J Psychiatry Neurosci 2019;44:223-36. [PMID: 30840428 DOI: 10.1503/jpn.180036] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 12.0] [Reference Citation Analysis]
5 Baldinger-Melich P, Urquijo Castro MF, Seiger R, Ruef A, Dwyer DB, Kranz GS, Klöbl M, Kambeitz J, Kaufmann U, Windischberger C, Kasper S, Falkai P, Lanzenberger R, Koutsouleris N. Sex Matters: A Multivariate Pattern Analysis of Sex- and Gender-Related Neuroanatomical Differences in Cis- and Transgender Individuals Using Structural Magnetic Resonance Imaging. Cereb Cortex 2020;30:1345-56. [PMID: 31368487 DOI: 10.1093/cercor/bhz170] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
6 Zheng W, Zhou YL, Liu WJ, Wang CY, Zhan YN, Li HQ, Chen LJ, Li MD, Ning YP. Neurocognitive performance and repeated-dose intravenous ketamine in major depressive disorder. J Affect Disord 2019;246:241-7. [PMID: 30590286 DOI: 10.1016/j.jad.2018.12.005] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
7 Ma X, Liu J, Liu T, Ma L, Wang W, Shi S, Wang Y, Gong Q, Wang M. Altered Resting-State Functional Activity in Medication-Naive Patients With First-Episode Major Depression Disorder vs. Healthy Control: A Quantitative Meta-Analysis. Front Behav Neurosci 2019;13:89. [PMID: 31133831 DOI: 10.3389/fnbeh.2019.00089] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
8 Suh JS, Schneider MA, Minuzzi L, MacQueen GM, Strother SC, Kennedy SH, Frey BN. Cortical thickness in major depressive disorder: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2019;88:287-302. [PMID: 30118825 DOI: 10.1016/j.pnpbp.2018.08.008] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 10.5] [Reference Citation Analysis]
9 Fitzgerald JM, Webb EK, Weis CN, Huggins AA, Bennett KP, Miskovich TA, Krukowski JL, deRoon-Cassini TA, Larson CL. Hippocampal Resting-State Functional Connectivity Forecasts Individual Posttraumatic Stress Disorder Symptoms: A Data-Driven Approach. Biol Psychiatry Cogn Neurosci Neuroimaging 2021:S2451-9022(21)00232-9. [PMID: 34478884 DOI: 10.1016/j.bpsc.2021.08.007] [Reference Citation Analysis]
10 Blitz R, Storck M, Baune BT, Dugas M, Opel N. Design and Implementation of an Informatics Infrastructure for Standardized Data Acquisition, Transfer, Storage, and Export in Psychiatric Clinical Routine: Feasibility Study. JMIR Ment Health 2021;8:e26681. [PMID: 34106072 DOI: 10.2196/26681] [Reference Citation Analysis]
11 Zheng W, Jiang ML, He HB, Li RP, Li QL, Zhang CP, Zhou SM, Yan S, Ning YP, Huang X. Serum BDNF Levels are Not Associated with the Antidepressant Effects of Nonconvulsive Electrotherapy. Neuropsychiatr Dis Treat 2020;16:1555-60. [PMID: 32606707 DOI: 10.2147/NDT.S256278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Cearns M, Hahn T, Clark S, Baune BT. Machine learning probability calibration for high-risk clinical decision-making. Aust N Z J Psychiatry 2020;54:123-6. [PMID: 31707786 DOI: 10.1177/0004867419885448] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
13 Widge AS, Bilge MT, Montana R, Chang W, Rodriguez CI, Deckersbach T, Carpenter LL, Kalin NH, Nemeroff CB. Electroencephalographic Biomarkers for Treatment Response Prediction in Major Depressive Illness: A Meta-Analysis. Am J Psychiatry 2019;176:44-56. [PMID: 30278789 DOI: 10.1176/appi.ajp.2018.17121358] [Cited by in Crossref: 56] [Cited by in F6Publishing: 43] [Article Influence: 14.0] [Reference Citation Analysis]
14 Cohen SE, Zantvoord JB, Wezenberg BN, Bockting CLH, van Wingen GA. Magnetic resonance imaging for individual prediction of treatment response in major depressive disorder: a systematic review and meta-analysis. Transl Psychiatry 2021;11:168. [PMID: 33723229 DOI: 10.1038/s41398-021-01286-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
15 Kraus C, Klöbl M, Tik M, Auer B, Vanicek T, Geissberger N, Pfabigan DM, Hahn A, Woletz M, Paul K, Komorowski A, Kasper S, Windischberger C, Lamm C, Lanzenberger R. The pulvinar nucleus and antidepressant treatment: dynamic modeling of antidepressant response and remission with ultra-high field functional MRI. Mol Psychiatry 2019;24:746-56. [PMID: 29422521 DOI: 10.1038/s41380-017-0009-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
16 Stolicyn A, Steele JD, Seriès P. Prediction of depression symptoms in individual subjects with face and eye movement tracking. Psychol Med 2020;:1-9. [PMID: 33161920 DOI: 10.1017/S0033291720003608] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Kambeitz J, Cabral C, Sacchet MD, Gotlib IH, Zahn R, Serpa MH, Walter M, Falkai P, Koutsouleris N. Reply to: Sample Size, Model Robustness, and Classification Accuracy in Diagnostic Multivariate Neuroimaging Analyses. Biol Psychiatry 2018;84:e83-4. [PMID: 29580572 DOI: 10.1016/j.biopsych.2018.01.023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
18 Xiong S, Li W, Zhou Y, Ren H, Lin G, Zhang S, Xiang X. Vortioxetine Modulates the Regional Signal in First-Episode Drug-Free Major Depressive Disorder at Rest. Front Psychiatry 2022;13:950885. [DOI: 10.3389/fpsyt.2022.950885] [Reference Citation Analysis]
19 Walter M, Alizadeh S, Jamalabadi H, Lueken U, Dannlowski U, Walter H, Olbrich S, Colic L, Kambeitz J, Koutsouleris N, Hahn T, Dwyer DB. Translational machine learning for psychiatric neuroimaging. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2019;91:113-21. [DOI: 10.1016/j.pnpbp.2018.09.014] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 8.7] [Reference Citation Analysis]
20 Zheng Y, Chen X, Li D, Liu Y, Tan X, Liang Y, Zhang H, Qiu S, Shen D. Treatment-naïve first episode depression classification based on high-order brain functional network. J Affect Disord 2019;256:33-41. [PMID: 31158714 DOI: 10.1016/j.jad.2019.05.067] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
21 Stolicyn A, Harris MA, Shen X, Barbu MC, Adams MJ, Hawkins EL, de Nooij L, Yeung HW, Murray AD, Lawrie SM, Steele JD, McIntosh AM, Whalley HC. Automated classification of depression from structural brain measures across two independent community-based cohorts. Hum Brain Mapp 2020;41:3922-37. [PMID: 32558996 DOI: 10.1002/hbm.25095] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
22 Na KS, Kim YK. The Application of a Machine Learning-Based Brain Magnetic Resonance Imaging Approach in Major Depression. Adv Exp Med Biol 2021;1305:57-69. [PMID: 33834394 DOI: 10.1007/978-981-33-6044-0_4] [Reference Citation Analysis]
23 Cearns M, Opel N, Clark S, Kaehler C, Thalamuthu A, Heindel W, Winter T, Teismann H, Minnerup H, Dannlowski U, Berger K, Baune BT. Predicting rehospitalization within 2 years of initial patient admission for a major depressive episode: a multimodal machine learning approach. Transl Psychiatry 2019;9:285. [PMID: 31712550 DOI: 10.1038/s41398-019-0615-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
24 Liu Z, Kang L, Zhang A, Yang C, Liu M, Wang J, Liu P, Zhang K, Sun N. Injuries in Left Corticospinal Tracts, Forceps Major, and Left Superior Longitudinal Fasciculus (Temporal) as the Quality Indicators for Major Depressive Disorder. Neural Plast 2021;2021:2348072. [PMID: 34462632 DOI: 10.1155/2021/2348072] [Reference Citation Analysis]
25 Black IM, Richmond M, Kolios A. Condition monitoring systems: a systematic literature review on machine-learning methods improving offshore-wind turbine operational management. International Journal of Sustainable Energy 2021;40:923-46. [DOI: 10.1080/14786451.2021.1890736] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
26 Lawrence AJ, Stahl D, Duan S, Fennema D, Jaeckle T, Young AH, Dazzan P, Moll J, Zahn R. Neurocognitive Measures of Self-blame and Risk Prediction Models of Recurrence in Major Depressive Disorder. Biol Psychiatry Cogn Neurosci Neuroimaging 2021:S2451-9022(21)00173-7. [PMID: 34175478 DOI: 10.1016/j.bpsc.2021.06.010] [Reference Citation Analysis]
27 Oglesby RT, Lam WW, Stanisz GJ. In vitro characterization of the serotonin biosynthesis pathway by CEST MRI. Magn Reson Med 2020;84:2389-99. [DOI: 10.1002/mrm.28281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Rubin-Falcone H, Zanderigo F, Thapa-Chhetry B, Lan M, Miller JM, Sublette ME, Oquendo MA, Hellerstein DJ, McGrath PJ, Stewart JW, Mann JJ. Pattern recognition of magnetic resonance imaging-based gray matter volume measurements classifies bipolar disorder and major depressive disorder. J Affect Disord 2018;227:498-505. [PMID: 29156364 DOI: 10.1016/j.jad.2017.11.043] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
29 Amidfar M, Quevedo J, Z. Réus G, Kim Y. Grey matter volume abnormalities in the first depressive episode of medication-naïve adult individuals: a systematic review of voxel based morphometric studies. International Journal of Psychiatry in Clinical Practice. [DOI: 10.1080/13651501.2020.1861632] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Miller CH, Sacchet MD, Gotlib IH. Support Vector Machines and Affective Science. Emotion Review 2020;12:297-308. [DOI: 10.1177/1754073920930784] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Sindermann L, Leehr EJ, Redlich R, Meinert S, Böhnlein J, Grotegerd D, Pollack D, Reepen M, Thiel K, Winter A, Waltemate L, Lemke H, Enneking V, Borgers T, Opel N, Repple J, Goltermann J, Brosch K, Meller T, Pfarr JK, Ringwald KG, Schmitt S, Stein F, Jansen A, Krug A, Nenadić I, Kircher T, Dannlowski U. Emotion processing in depression with and without comorbid anxiety disorder. J Affect Disord 2022;314:133-42. [PMID: 35803393 DOI: 10.1016/j.jad.2022.06.089] [Reference Citation Analysis]
32 Dwyer DB, Cabral C, Kambeitz-Ilankovic L, Sanfelici R, Kambeitz J, Calhoun V, Falkai P, Pantelis C, Meisenzahl E, Koutsouleris N. Brain Subtyping Enhances The Neuroanatomical Discrimination of Schizophrenia. Schizophr Bull 2018;44:1060-9. [PMID: 29529270 DOI: 10.1093/schbul/sby008] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 13.3] [Reference Citation Analysis]
33 Zheng W, Zhou YL, Wang CY, Lan XF, Zhang B, Yang MZ, Nie S, Ning YP. Neurocognitive effects of six ketamine infusions and the association with antidepressant effects in treatment-resistant bipolar depression: a preliminary study. PeerJ 2020;8:e10208. [PMID: 33194410 DOI: 10.7717/peerj.10208] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
34 Todeva-Radneva A, Paunova R, Kandilarova S, St Stoyanov D. The Value of Neuroimaging Techniques in the Translation and Transdiagnostic Validation of Psychiatric Diagnoses - Selective Review. Curr Top Med Chem 2020;20:540-53. [PMID: 32003690 DOI: 10.2174/1568026620666200131095328] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
35 Belleau EL, Kremens R, Ang YS, Pisoni A, Bondy E, Durham K, Auerbach RP, Pizzagalli DA. Reward Functioning Abnormalities in Adolescents at High Familial Risk for Depressive Disorders. Biol Psychiatry Cogn Neurosci Neuroimaging 2021;6:270-9. [PMID: 33160881 DOI: 10.1016/j.bpsc.2020.08.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Gärtner M, Ghisu ME, Scheidegger M, Bönke L, Fan Y, Stippl A, Herrera-Melendez AL, Metz S, Winnebeck E, Fissler M, Henning A, Bajbouj M, Borgwardt K, Barnhofer T, Grimm S. Aberrant working memory processing in major depression: evidence from multivoxel pattern classification. Neuropsychopharmacology 2018;43:1972-9. [PMID: 29777198 DOI: 10.1038/s41386-018-0081-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
37 Xu X, Dai J, Chen Y, Liu C, Xin F, Zhou X, Zhou F, Stamatakis EA, Yao S, Luo L, Huang Y, Wang J, Zou Z, Vatansever D, Kendrick KM, Zhou B, Becker B. Intrinsic connectivity of the prefrontal cortex and striato-limbic system respectively differentiate major depressive from generalized anxiety disorder. Neuropsychopharmacology 2021;46:791-8. [PMID: 32961541 DOI: 10.1038/s41386-020-00868-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
38 Neuhaus AH, Popescu FC. Sample Size, Model Robustness, and Classification Accuracy in Diagnostic Multivariate Neuroimaging Analyses. Biol Psychiatry 2018;84:e81-2. [PMID: 29580571 DOI: 10.1016/j.biopsych.2017.09.032] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
39 Khobo IL, Jankiewicz M, Holmes MJ, Little F, Cotton MF, Laughton B, van der Kouwe AJW, Moreau A, Nwosu E, Meintjes EM, Robertson FC. Multimodal magnetic resonance neuroimaging measures characteristic of early cART-treated pediatric HIV: A feature selection approach. Hum Brain Mapp 2022. [PMID: 35575438 DOI: 10.1002/hbm.25907] [Reference Citation Analysis]
40 Mackey S, Greely HT, Martucci KT. Neuroimaging-based pain biomarkers: definitions, clinical and research applications, and evaluation frameworks to achieve personalized pain medicine. Pain Rep 2019;4:e762. [PMID: 31579854 DOI: 10.1097/PR9.0000000000000762] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
41 Gärtner M, Ghisu E, Herrera-Melendez AL, Koslowski M, Aust S, Asbach P, Otte C, Regen F, Heuser I, Borgwardt K, Grimm S, Bajbouj M. Using routine MRI data of depressed patients to predict individual responses to electroconvulsive therapy. Exp Neurol 2021;335:113505. [PMID: 33068570 DOI: 10.1016/j.expneurol.2020.113505] [Reference Citation Analysis]
42 Hao Z, Li H, Ouyang L, Sun F, Wen X, Wang X. Pain avoidance and functional connectivity between insula and amygdala identifies suicidal attempters in patients with major depressive disorder using machine learning. Psychophysiology 2022;:e14136. [PMID: 35767231 DOI: 10.1111/psyp.14136] [Reference Citation Analysis]
43 Jollans L, Whelan R. Neuromarkers for Mental Disorders: Harnessing Population Neuroscience. Front Psychiatry 2018;9:242. [PMID: 29928237 DOI: 10.3389/fpsyt.2018.00242] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
44 Fernández-Alvarez J, Grassi M, Colombo D, Botella C, Cipresso P, Perna G, Riva G. Efficacy of bio- and neurofeedback for depression: a meta-analysis. Psychol Med 2021;:1-16. [PMID: 34776024 DOI: 10.1017/S0033291721004396] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
45 Bagherzadeh-azbari S, Khazaie H, Zarei M, Spiegelhalder K, Walter M, Leerssen J, Van Someren EJ, Sepehry AA, Tahmasian M. Neuroimaging insights into the link between depression and Insomnia: A systematic review. Journal of Affective Disorders 2019;258:133-43. [DOI: 10.1016/j.jad.2019.07.089] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
46 Kapadia M, Desai M, Parikh R. Fractures in the framework: limitations of classification systems in psychiatry
. Dialogues Clin Neurosci 2020;22:17-26. [PMID: 32699502 DOI: 10.31887/DCNS.2020.22.1/rparikh] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Shane MS, Denomme WJ. Machine learning approaches for parsing comorbidity/heterogeneity in antisociality and substance use disorders: A primer. Personal Neurosci 2021;4:e6. [PMID: 34909565 DOI: 10.1017/pen.2021.2] [Reference Citation Analysis]
48 Chong A, Tolomeo S, Xiong Y, Angeles D, Cheung M, Becker B, Lai PS, Lei Z, Malavasi F, Tang Q, Chew SH, Ebstein RP. Blending oxytocin and dopamine with everyday creativity. Sci Rep 2021;11:16185. [PMID: 34376746 DOI: 10.1038/s41598-021-95724-x] [Reference Citation Analysis]
49 Song JW, Yoon NR, Jang SM, Lee GY, Kim BN. Neuroimaging-Based Deep Learning in Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder. Soa Chongsonyon Chongsin Uihak 2020;31:97-104. [PMID: 32665754 DOI: 10.5765/jkacap.200021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
50 Vieira S, Liang X, Guiomar R, Mechelli A. Can we predict who will benefit from cognitive-behavioural therapy? A systematic review and meta-analysis of machine learning studies. Clinical Psychology Review 2022. [DOI: 10.1016/j.cpr.2022.102193] [Reference Citation Analysis]
51 Singh J, Goyal G. Decoding depressive disorder using computer vision. Multimed Tools Appl 2021;80:8189-212. [DOI: 10.1007/s11042-020-10128-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
52 Sanfelici R, Dwyer DB, Antonucci LA, Koutsouleris N. Individualized Diagnostic and Prognostic Models for Patients With Psychosis Risk Syndromes: A Meta-analytic View on the State of the Art. Biological Psychiatry 2020;88:349-60. [DOI: 10.1016/j.biopsych.2020.02.009] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 14.0] [Reference Citation Analysis]
53 Zhu G, Feng F. Non-targeted metabolite profiling and specific targeted discrimination strategy for quality evaluation of Cortex Phellodendri from different varieties. RSC Adv 2018;8:22086-94. [DOI: 10.1039/c8ra03369b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
54 Tulay EE, Metin B, Tarhan N, Arıkan MK. Multimodal Neuroimaging: Basic Concepts and Classification of Neuropsychiatric Diseases. Clin EEG Neurosci 2019;50:20-33. [DOI: 10.1177/1550059418782093] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
55 Ayyash S, Davis AD, Alders GL, MacQueen G, Strother SC, Hassel S, Zamyadi M, Arnott SR, Harris JK, Lam RW, Milev R, Müller DJ, Kennedy SH, Rotzinger S, Frey BN, Minuzzi L, Hall GB; CAN-BIND Investigator Team. Exploring brain connectivity changes in major depressive disorder using functional-structural data fusion: A CAN-BIND-1 study. Hum Brain Mapp 2021. [PMID: 34296501 DOI: 10.1002/hbm.25590] [Reference Citation Analysis]
56 Li R, Yang J, Li L, Shen F, Zou T, Wang H, Wang X, Li J, Deng C, Huang X, Wang C, He Z, Lu F, Zeng L, Chen H. Integrating Multilevel Functional Characteristics Reveals Aberrant Neural Patterns during Audiovisual Emotional Processing in Depression. Cereb Cortex 2021:bhab185. [PMID: 34642754 DOI: 10.1093/cercor/bhab185] [Reference Citation Analysis]
57 Flint C, Cearns M, Opel N, Redlich R, Mehler DMA, Emden D, Winter NR, Leenings R, Eickhoff SB, Kircher T, Krug A, Nenadic I, Arolt V, Clark S, Baune BT, Jiang X, Dannlowski U, Hahn T. Systematic misestimation of machine learning performance in neuroimaging studies of depression. Neuropsychopharmacology 2021;46:1510-7. [PMID: 33958703 DOI: 10.1038/s41386-021-01020-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 15.0] [Reference Citation Analysis]
58 Zhou C, Cheng Y, Ping L, Xu J, Shen Z, Jiang L, Shi L, Yang S, Lu Y, Xu X. Support Vector Machine Classification of Obsessive-Compulsive Disorder Based on Whole-Brain Volumetry and Diffusion Tensor Imaging. Front Psychiatry 2018;9:524. [PMID: 30405461 DOI: 10.3389/fpsyt.2018.00524] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
59 Zheng W, Jiang M, He H, Li R, Li Q, Zhang C, Zhou S, Yan S, Ning Y, Huang X. A Preliminary Study of Adjunctive Nonconvulsive Electrotherapy for Treatment-Refractory Depression. Psychiatr Q 2021;92:311-20. [DOI: 10.1007/s11126-020-09798-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Zhu X, Yuan F, Zhou G, Nie J, Wang D, Hu P, Ouyang L, Kong L, Liao W. Cross-network interaction for diagnosis of major depressive disorder based on resting state functional connectivity. Brain Imaging Behav 2021;15:1279-89. [PMID: 32734435 DOI: 10.1007/s11682-020-00326-2] [Reference Citation Analysis]
61 Fu CHY, Fan Y, Davatzikos C. Addressing heterogeneity (and homogeneity) in treatment mechanisms in depression and the potential to develop diagnostic and predictive biomarkers. Neuroimage Clin 2019;24:101997. [PMID: 31525565 DOI: 10.1016/j.nicl.2019.101997] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
62 Peng D, Yao Z. Neuroimaging Advance in Depressive Disorder. In: Fang Y, editor. Depressive Disorders: Mechanisms, Measurement and Management. Singapore: Springer; 2019. pp. 59-83. [DOI: 10.1007/978-981-32-9271-0_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
63 Tognin S, van Hell HH, Merritt K, Winter-van Rossum I, Bossong MG, Kempton MJ, Modinos G, Fusar-Poli P, Mechelli A, Dazzan P, Maat A, de Haan L, Crespo-Facorro B, Glenthøj B, Lawrie SM, McDonald C, Gruber O, van Amelsvoort T, Arango C, Kircher T, Nelson B, Galderisi S, Bressan R, Kwon JS, Weiser M, Mizrahi R, Sachs G, Maatz A, Kahn R, McGuire P; PSYSCAN Consortium. Towards Precision Medicine in Psychosis: Benefits and Challenges of Multimodal Multicenter Studies-PSYSCAN: Translating Neuroimaging Findings From Research into Clinical Practice. Schizophr Bull 2020;46:432-41. [PMID: 31424555 DOI: 10.1093/schbul/sbz067] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 29.0] [Reference Citation Analysis]
64 Lalousis PA, Wood SJ, Schmaal L, Chisholm K, Griffiths SL, Reniers RLEP, Bertolino A, Borgwardt S, Brambilla P, Kambeitz J, Lencer R, Pantelis C, Ruhrmann S, Salokangas RKR, Schultze-Lutter F, Bonivento C, Dwyer D, Ferro A, Haidl T, Rosen M, Schmidt A, Meisenzahl E, Koutsouleris N, Upthegrove R; PRONIA Consortium. Heterogeneity and Classification of Recent Onset Psychosis and Depression: A Multimodal Machine Learning Approach. Schizophr Bull 2021;47:1130-40. [PMID: 33543752 DOI: 10.1093/schbul/sbaa185] [Reference Citation Analysis]
65 Takahashi J, Hirano Y, Miura K, Morita K, Fujimoto M, Yamamori H, Yasuda Y, Kudo N, Shishido E, Okazaki K, Shiino T, Nakao T, Kasai K, Hashimoto R, Onitsuka T. Eye Movement Abnormalities in Major Depressive Disorder. Front Psychiatry 2021;12:673443. [PMID: 34447321 DOI: 10.3389/fpsyt.2021.673443] [Reference Citation Analysis]
66 Wojtalik JA, Eack SM, Smith MJ, Keshavan MS. Using Cognitive Neuroscience to Improve Mental Health Treatment: A Comprehensive Review. J Soc Social Work Res 2018;9:223-60. [PMID: 30505392 DOI: 10.1086/697566] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
67 Maulitz L, Stickeler E, Stickel S, Habel U, Tchaikovski SN, Chechko N. Endometriosis, psychiatric comorbidities and neuroimaging: Estimating the odds of an endometriosis brain. Front Neuroendocrinol 2022;:100988. [PMID: 35202605 DOI: 10.1016/j.yfrne.2022.100988] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Jollans L, Boyle R, Artiges E, Banaschewski T, Desrivières S, Grigis A, Martinot JL, Paus T, Smolka MN, Walter H, Schumann G, Garavan H, Whelan R. Quantifying performance of machine learning methods for neuroimaging data. Neuroimage 2019;199:351-65. [PMID: 31173905 DOI: 10.1016/j.neuroimage.2019.05.082] [Cited by in Crossref: 50] [Cited by in F6Publishing: 32] [Article Influence: 16.7] [Reference Citation Analysis]
69 Yamada T, Hashimoto RI, Yahata N, Ichikawa N, Yoshihara Y, Okamoto Y, Kato N, Takahashi H, Kawato M. Resting-State Functional Connectivity-Based Biomarkers and Functional MRI-Based Neurofeedback for Psychiatric Disorders: A Challenge for Developing Theranostic Biomarkers. Int J Neuropsychopharmacol 2017;20:769-81. [PMID: 28977523 DOI: 10.1093/ijnp/pyx059] [Cited by in Crossref: 47] [Cited by in F6Publishing: 32] [Article Influence: 11.8] [Reference Citation Analysis]
70 Iwabuchi SJ, Xing Y, Cottam WJ, Drabek MM, Tadjibaev A, Fernandes GS, Petersen KK, Arendt-nielsen L, Graven-nielsen T, Valdes AM, Zhang W, Doherty M, Walsh D, Auer DP. Brain perfusion patterns are altered in chronic knee pain: a spatial covariance analysis of arterial spin labelling MRI. Pain 2020;161:1255-63. [DOI: 10.1097/j.pain.0000000000001829] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
71 Dunlop BW. How Shall I Diagnose Thee? Let Me Count the Ways. Biol Psychiatry 2017;82:306-8. [PMID: 28781003 DOI: 10.1016/j.biopsych.2017.06.018] [Reference Citation Analysis]