BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pawar A, Prabhu P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomedicine & Pharmacotherapy 2019;110:319-41. [DOI: 10.1016/j.biopha.2018.11.122] [Cited by in Crossref: 27] [Cited by in F6Publishing: 39] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Huang K, Yan M, Zhang H, Xue J, Chen J. A phthalocyanine-based photosensitizer for effectively combating triple negative breast cancer with enhanced photodynamic anticancer activity and immune response. Eur J Med Chem 2022;241:114644. [PMID: 35939997 DOI: 10.1016/j.ejmech.2022.114644] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Sun J, Zhao H, Xu W, Jiang G. Recent advances in photothermal therapy-based multifunctional nanoplatforms for breast cancer. Front Chem 2022;10:1024177. [DOI: 10.3389/fchem.2022.1024177] [Reference Citation Analysis]
3 Arjama M, Mehnath S, Jeyaraj M. Self-assembled hydrogel nanocube for stimuli responsive drug delivery and tumor ablation by phototherapy against breast cancer. Int J Biol Macromol 2022;213:435-46. [PMID: 35661669 DOI: 10.1016/j.ijbiomac.2022.05.190] [Reference Citation Analysis]
4 Xu M, Yang Y, Yuan Z. Breast Cancer Cell Membrane Camouflaged Lipid Nanoparticles for Tumor-Targeted NIR-II Phototheranostics. Pharmaceutics 2022;14:1367. [PMID: 35890265 DOI: 10.3390/pharmaceutics14071367] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Sinai Kunde S, Wairkar S. Folic acid anchored urchin-like raloxifene nanoparticles for receptor targeting in breast cancer: Synthesis, optimisation and in vitro biological evaluation. Int J Pharm 2022;623:121926. [PMID: 35716974 DOI: 10.1016/j.ijpharm.2022.121926] [Reference Citation Analysis]
6 Kokila N, Mahesh B, Roopa K, Daruka Prasad B, Raj K, Manjula S, Mruthunjaya K, Ramu R. Thunbergia mysorensis mediated nano silver oxide for enhanced antibacterial, antioxidant, anticancer potential and in vitro hemolysis evaluation. Journal of Molecular Structure 2022;1255:132455. [DOI: 10.1016/j.molstruc.2022.132455] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Kang Z, Yang M, Feng X, Liao H, Zhang Z, Du Y. Multifunctional Theranostic Nanoparticles for Enhanced Tumor Targeted Imaging and Synergistic FUS/Chemotherapy on Murine 4T1 Breast Cancer Cell. IJN 2022;Volume 17:2165-87. [DOI: 10.2147/ijn.s360161] [Reference Citation Analysis]
8 Chaudhuri A, Kumar DN, Dehari D, Singh S, Kumar P, Bolla PK, Kumar D, Agrawal AK. Emergence of Nanotechnology as a Powerful Cavalry against Triple-Negative Breast Cancer (TNBC). Pharmaceuticals 2022;15:542. [DOI: 10.3390/ph15050542] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Shokooh MK, Emami F, Duwa R, Jeong J, Yook S. Triple-negative breast cancer treatment meets nanoparticles: Current status and future direction. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103274] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wang W, Liu X, Ding L, Jin HJ, Li X. RNA Hydrogel Combined with MnO2 Nanoparticles as a Nano-Vaccine to Treat Triple Negative Breast Cancer. Front Chem 2021;9:797094. [PMID: 35004614 DOI: 10.3389/fchem.2021.797094] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Dias CJ, Helguero L, Faustino MAF. Current Photoactive Molecules for Targeted Therapy of Triple-Negative Breast Cancer. Molecules 2021;26:7654. [PMID: 34946732 DOI: 10.3390/molecules26247654] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
12 Nagajyothi P, Muthuraman P, Tettey C, Yoo K, Shim J. In vitro anticancer activity of eco-friendly synthesized ZnO/Ag nanocomposites. Ceramics International 2021;47:34940-8. [DOI: 10.1016/j.ceramint.2021.09.035] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
13 Nguyen PV, Hervé-Aubert K, Chourpa I, Allard-Vannier E. Active targeting strategy in nanomedicines using anti-EGFR ligands - A promising approach for cancer therapy and diagnosis. Int J Pharm 2021;609:121134. [PMID: 34571073 DOI: 10.1016/j.ijpharm.2021.121134] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Abdus Subhan M, Torchilin VP. Advances with antibody-drug conjugates in breast cancer treatment. Eur J Pharm Biopharm 2021:S0939-6411(21)00271-X. [PMID: 34748933 DOI: 10.1016/j.ejpb.2021.10.016] [Reference Citation Analysis]
15 Singh DD, Yadav DK. TNBC: Potential Targeting of Multiple Receptors for a Therapeutic Breakthrough, Nanomedicine, and Immunotherapy. Biomedicines 2021;9:876. [PMID: 34440080 DOI: 10.3390/biomedicines9080876] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
16 Fan RZ, Chen L, Su T, Li W, Huang JL, Sang J, Tang GH, Yin S. Discovery of 8,9-seco-ent-Kaurane Diterpenoids as Potential Leads for the Treatment of Triple-Negative Breast Cancer. J Med Chem 2021;64:9926-42. [PMID: 34236840 DOI: 10.1021/acs.jmedchem.1c00166] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
17 Kirar S, Thakur NS, Reddy YN, Banerjee UC, Bhaumik J. Insights on the polypyrrole based nanoformulations for photodynamic therapy. J Porphyrins Phthalocyanines 2021;25:605-22. [DOI: 10.1142/s1088424621300032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Mansur AAP, Mansur HS, Leonel AG, Carvalho IC, Lage MCG, Carvalho SM, Krambrock K, Lobato ZIP. Supramolecular magnetonanohybrids for multimodal targeted therapy of triple-negative breast cancer cells. J Mater Chem B 2020;8:7166-88. [PMID: 32614035 DOI: 10.1039/d0tb01175d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
19 Franco MS, Silva CA, Leite EA, Silveira JN, Teixeira CS, Cardoso VN, Ferreira E, Cassali GD, Branco de Barros AL, Oliveira MC. Investigation of the antitumor activity and toxicity of cisplatin loaded pH-sensitive-pegylated liposomes in a triple negative breast cancer animal model. Journal of Drug Delivery Science and Technology 2021;62:102400. [DOI: 10.1016/j.jddst.2021.102400] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Keihan Shokooh M, Emami F, Jeong JH, Yook S. Bio-Inspired and Smart Nanoparticles for Triple Negative Breast Cancer Microenvironment. Pharmaceutics 2021;13:287. [PMID: 33671698 DOI: 10.3390/pharmaceutics13020287] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
21 Nabil G, Alzhrani R, Alsaab HO, Atef M, Sau S, Iyer AK, Banna HE. CD44 Targeted Nanomaterials for Treatment of Triple-Negative Breast Cancer. Cancers (Basel) 2021;13:898. [PMID: 33672756 DOI: 10.3390/cancers13040898] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
22 Zhang Y, Fan Y, Jing X, Zhao L, Liu T, Wang L, Zhang L, Gu S, Zhao X, Teng Y. OTUD5-mediated deubiquitination of YAP in macrophage promotes M2 phenotype polarization and favors triple-negative breast cancer progression. Cancer Lett 2021;504:104-15. [PMID: 33587979 DOI: 10.1016/j.canlet.2021.02.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
23 Lan M, Lu W, Zou T, Li L, Liu F, Cai T, Cai Y. Role of inflammatory microenvironment: potential implications for improved breast cancer nano-targeted therapy. Cell Mol Life Sci 2021;78:2105-29. [PMID: 33386887 DOI: 10.1007/s00018-020-03696-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
24 Nguyen PV, Hervé-aubert K, David S, Lautram N, Passirani C, Chourpa I, Aubrey N, Allard-vannier E. Targeted nanomedicine with anti-EGFR scFv for siRNA delivery into triple negative breast cancer cells. European Journal of Pharmaceutics and Biopharmaceutics 2020;157:74-84. [DOI: 10.1016/j.ejpb.2020.10.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
25 Ristovski Trifunović J, Žižak Ž, Marković S, Janković N, Ignjatović N. Chitosan nanobeads loaded with Biginelli hybrids as cell-selective toxicity systems with a homogeneous distribution of the cell cycle in cancer treatment. RSC Adv 2020;10:41542-50. [PMID: 35516580 DOI: 10.1039/d0ra08085c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Alhudaithi SS, Almuqbil RM, Zhang H, Bielski ER, Du W, Sunbul FS, Bos PD, da Rocha SRP. Local Targeting of Lung-Tumor-Associated Macrophages with Pulmonary Delivery of a CSF-1R Inhibitor for the Treatment of Breast Cancer Lung Metastases. Mol Pharm 2020;17:4691-703. [PMID: 33170724 DOI: 10.1021/acs.molpharmaceut.0c00983] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
27 Chen T, Liu X, Hong H, Wei H. Novel single-domain antibodies against the EGFR domain III epitope exhibit the anti-tumor effect. J Transl Med 2020;18:376. [PMID: 33023595 DOI: 10.1186/s12967-020-02538-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Emami F, Pathak S, Nguyen TT, Shrestha P, Maharjan S, Kim JO, Jeong JH, Yook S. Photoimmunotherapy with cetuximab-conjugated gold nanorods reduces drug resistance in triple negative breast cancer spheroids with enhanced infiltration of tumor-associated macrophages. J Control Release 2021;329:645-64. [PMID: 33022330 DOI: 10.1016/j.jconrel.2020.10.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
29 Ringer J, Morrison B, Kingsley K. Evaluation of Hyaluronic Acid to Modulate Oral Squamous Cell Carcinoma Growth In Vitro. J Funct Biomater 2020;11:E72. [PMID: 33019572 DOI: 10.3390/jfb11040072] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Hattab D, Bakhtiar A. Bioengineered siRNA-Based Nanoplatforms Targeting Molecular Signaling Pathways for the Treatment of Triple Negative Breast Cancer: Preclinical and Clinical Advancements. Pharmaceutics 2020;12:E929. [PMID: 33003468 DOI: 10.3390/pharmaceutics12100929] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
31 Hong HC, Chuang CH, Huang WC, Weng SL, Chen CH, Chang KH, Liao KW, Huang HD. A panel of eight microRNAs is a good predictive parameter for triple-negative breast cancer relapse. Theranostics 2020;10:8771-89. [PMID: 32754277 DOI: 10.7150/thno.46142] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
32 Kansara S, Pandey V, Lobie PE, Sethi G, Garg M, Pandey AK. Mechanistic Involvement of Long Non-Coding RNAs in Oncotherapeutics Resistance in Triple-Negative Breast Cancer. Cells 2020;9:E1511. [PMID: 32575858 DOI: 10.3390/cells9061511] [Cited by in Crossref: 31] [Cited by in F6Publishing: 37] [Article Influence: 15.5] [Reference Citation Analysis]
33 Jin X, Lu X, Zhang Z, Lv H. Indocyanine Green-Parthenolide Thermosensitive Liposome Combination Treatment for Triple-Negative Breast Cancer. Int J Nanomedicine 2020;15:3193-206. [PMID: 32440118 DOI: 10.2147/IJN.S245289] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
34 Kim YJ, Lee HI, Kim JK, Kim CH, Kim YJ. Peptide 18-4/chlorin e6-conjugated polyhedral oligomeric silsesquioxane nanoparticles for targeted photodynamic therapy of breast cancer. Colloids Surf B Biointerfaces 2020;189:110829. [PMID: 32036332 DOI: 10.1016/j.colsurfb.2020.110829] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
35 Ionescu A, Caligiuri R, Godbert N, Ricciardi L, La Deda M, Ghedini M, Ferri N, Lupo MG, Facchetti G, Rimoldi I, Aiello I. Cytotoxic performances of new anionic cyclometalated Pt(II) complexes bearing chelated O^O ligands. Appl Organometal Chem 2020;34. [DOI: 10.1002/aoc.5455] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
36 Hossain SM, Zainal Abidin SA, Chowdhury EH. Krebs Cycle Intermediate-Modified Carbonate Apatite Nanoparticles Drastically Reduce Mouse Tumor Burden and Toxicity by Restricting Broad Tissue Distribution of Anticancer Drugs. Cancers (Basel) 2020;12:E161. [PMID: 31936503 DOI: 10.3390/cancers12010161] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
37 Zhou Y, Chen D, Xue G, Yu S, Yuan C, Huang M, Jiang L. Improved therapeutic efficacy of quercetin-loaded polymeric nanoparticles on triple-negative breast cancer by inhibiting uPA. RSC Adv 2020;10:34517-26. [DOI: 10.1039/d0ra04231e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
38 Mirza Z, Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin Cancer Biol 2021;69:226-37. [PMID: 31704145 DOI: 10.1016/j.semcancer.2019.10.020] [Cited by in Crossref: 17] [Cited by in F6Publishing: 37] [Article Influence: 5.7] [Reference Citation Analysis]
39 Khan MA, Jain VK, Rizwanullah M, Ahmad J, Jain K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: a review on drug discovery and future challenges. Drug Discovery Today 2019;24:2181-91. [DOI: 10.1016/j.drudis.2019.09.001] [Cited by in Crossref: 42] [Cited by in F6Publishing: 77] [Article Influence: 14.0] [Reference Citation Analysis]