BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao J, Chen G, Pang X, Zhang P, Hou X, Chen P, Xie YW, He CY, Wang Z, Chen ZY. Calcium phosphate nanoneedle based gene delivery system for cancer genetic immunotherapy. Biomaterials 2020;250:120072. [PMID: 32361307 DOI: 10.1016/j.biomaterials.2020.120072] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Yang Y, Zhao T, Chen Q, Li Y, Xiao Z, Xiang Y, Wang B, Qiu Y, Tu S, Jiang Y, Nan Y, Huang Q, Ai K. Nanomedicine Strategies for Heating “Cold” Ovarian Cancer (OC): Next Evolution in Immunotherapy of OC. Advanced Science. [DOI: 10.1002/advs.202202797] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
2 Su L, Sun Z, Qi F, Su H, Qian L, Li J, Zuo L, Huang J, Yu Z, Li J, Chen Z, Zhang S. GRP75-driven, cell-cycle-dependent macropinocytosis of Tat/pDNA-Ca2+ nanoparticles underlies distinct gene therapy effect in ovarian cancer. J Nanobiotechnology 2022;20:340. [PMID: 35858873 DOI: 10.1186/s12951-022-01530-6] [Reference Citation Analysis]
3 Huang X, Qiu M, Wang T, Li B, Zhang S, Zhang T, Liu P, Wang Q, Qian ZR, Zhu C, Wu M, Zhao J. Carrier-free multifunctional nanomedicine for intraperitoneal disseminated ovarian cancer therapy. J Nanobiotechnology 2022;20:93. [PMID: 35193583 DOI: 10.1186/s12951-022-01300-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
4 Veselov VV, Nosyrev AE, Jicsinszky L, Alyautdin RN, Cravotto G. Targeted Delivery Methods for Anticancer Drugs. Cancers (Basel) 2022;14:622. [PMID: 35158888 DOI: 10.3390/cancers14030622] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Wu Z, Lee Z, Huang Y, Tsou M, Lin H. Drug delivery system with dual imaging and dual response control drug release functions for chemo-photodynamic synergistic therapy. Journal of Inorganic Biochemistry 2022. [DOI: 10.1016/j.jinorgbio.2022.111717] [Reference Citation Analysis]
6 Liu Y, Wang Y, Song S, Zhang H. Tumor Diagnosis and Therapy Mediated by Metal Phosphorus-Based Nanomaterials. Adv Mater 2021;33:e2103936. [PMID: 34596931 DOI: 10.1002/adma.202103936] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
7 Gao L, Chen S, Hong M, Zhou W, Wang B, Qiu J, Xia J, Zhao P, Fu L, Wang J, Dai Y, Xie N, Yang Q, Huang HD, Gao X, Zou C. Kinectin 1 promotes the growth of triple-negative breast cancer via directly co-activating NF-kappaB/p65 and enhancing its transcriptional activity. Signal Transduct Target Ther 2021;6:250. [PMID: 34219129 DOI: 10.1038/s41392-021-00652-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
8 Ding Y, Wang C, Sun Z, Wu Y, You W, Mao Z, Wang W. Mesenchymal Stem Cells Engineered by Nonviral Vectors: A Powerful Tool in Cancer Gene Therapy. Pharmaceutics 2021;13:913. [PMID: 34205513 DOI: 10.3390/pharmaceutics13060913] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
9 Kütük N. Mesoporous silica nanoparticles, methods of preparation and use of bone tissue engineering. International Journal of Life Sciences and Biotechnology 2021. [DOI: 10.38001/ijlsb.880711] [Reference Citation Analysis]
10 Fan D, Wang T, Hu J, Zhou L, Zhou J, Wei S. Plasmid DNA-Based Bioluminescence-Activated System for Photodynamic Therapy in Cancer Treatment. ChemMedChem 2021;16:1967-74. [PMID: 33594787 DOI: 10.1002/cmdc.202000979] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
11 Cano M, Giner-Casares JJ. Biomineralization at fluid interfaces. Adv Colloid Interface Sci 2020;286:102313. [PMID: 33181402 DOI: 10.1016/j.cis.2020.102313] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
12 Arévalo-Soliz LM, Hardee CL, Fogg JM, Corman NR, Noorbakhsh C, Zechiedrich L. Improving therapeutic potential of non-viral minimized DNA vectors. Cell Gene Ther Insights 2020;6:1489-505. [PMID: 33953961 DOI: 10.18609/cgti.2020.163] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
13 Du Z, Cao G, Li K, Zhang R, Li X. Nanocomposites for the delivery of bioactive molecules in tissue repair: vital structural features, application mechanisms, updated progress and future perspectives. J Mater Chem B 2020;8:10271-89. [PMID: 33084730 DOI: 10.1039/d0tb01670e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
14 Feng R, Yu F, Xu J, Hu X. Knowledge gaps in immune response and immunotherapy involving nanomaterials: Databases and artificial intelligence for material design. Biomaterials 2021;266:120469. [PMID: 33120200 DOI: 10.1016/j.biomaterials.2020.120469] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
15 Tay A. The Benefits of Going Small: Nanostructures for Mammalian Cell Transfection. ACS Nano 2020;14:7714-21. [PMID: 32631053 DOI: 10.1021/acsnano.0c04624] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]