BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang G, Yang H, Wu W, Zhang P, Wang J. Design and optimization of a biodegradable porous zein conduit using microtubes as a guide for rat sciatic nerve defect repair. Biomaterials 2017;131:145-59. [DOI: 10.1016/j.biomaterials.2017.03.038] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 6.6] [Reference Citation Analysis]
Number Citing Articles
1 Gurevich M, Iocolano K, Martin IN, Singh G, Khan SU, Bui DT, Dagum AB, Komatsu DE. Efficacy of leupeptin in treating ischemia in a rat hind limb model. Physiol Rep 2022;10:e15411. [PMID: 35924300 DOI: 10.14814/phy2.15411] [Reference Citation Analysis]
2 Chen X, Wang B, Mao Y, Al Mamun A, Wu M, Qu S, Zhang X, Zhang J, Pan J, Zhu Y, Mo T, Jiang C, Yang L, Xiao J. Zein nanoparticles loaded with chloroquine improve functional recovery and attenuate neuroinflammation after spinal cord injury. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.137882] [Reference Citation Analysis]
3 Lu M, Wu M, Huang Y, Yao J, Shao Z, Chen X. Animal protein-plant protein composite nanospheres for dual-drug loading and synergistic cancer therapy. J Mater Chem B 2022. [PMID: 35416829 DOI: 10.1039/d2tb00368f] [Reference Citation Analysis]
4 Yu J, Lin Y, Wang G, Song J, Hayat U, Liu C, Raza A, Huang X, Lin H, Wang JY. Zein-induced immune response and modulation by size, pore structure and drug-loading: Application for sciatic nerve regeneration. Acta Biomater 2022;140:289-301. [PMID: 34843952 DOI: 10.1016/j.actbio.2021.11.035] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Hou K, Zhang Y, Bao M, Xin C, Wei Z, Lin G, Wang Z. A Multifunctional Magnetic Red Blood Cell-Mimetic Micromotor for Drug Delivery and Image-Guided Therapy. ACS Appl Mater Interfaces 2022;14:3825-37. [PMID: 35025195 DOI: 10.1021/acsami.1c21331] [Reference Citation Analysis]
6 Hayat U, Raza A, Bilal M, Iqbal HM, Wang J. Biodegradable polymeric conduits: Platform materials for guided nerve regeneration and vascular tissue engineering. Journal of Drug Delivery Science and Technology 2022;67:103014. [DOI: 10.1016/j.jddst.2021.103014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Chen F, Wu M, Wu P, Xiao A, Ke M, Huselstein C, Cai L, Tong Z, Chen Y. Natural Flammulina velutipes-Based Nerve Guidance Conduit as a Potential Biomaterial for Peripheral Nerve Regeneration: In Vitro and In Vivo Studies. ACS Biomater Sci Eng 2021;7:3821-34. [PMID: 34297535 DOI: 10.1021/acsbiomaterials.1c00304] [Reference Citation Analysis]
8 Lu Q, Zhang F, Cheng W, Gao X, Ding Z, Zhang X, Lu Q, Kaplan DL. Nerve Guidance Conduits with Hierarchical Anisotropic Architecture for Peripheral Nerve Regeneration. Adv Healthc Mater 2021;10:e2100427. [PMID: 34038626 DOI: 10.1002/adhm.202100427] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
9 Kim H, Kumbar SG, Nukavarapu SP. Biomaterial-directed cell behavior for tissue engineering. Curr Opin Biomed Eng 2021;17:100260. [PMID: 33521410 DOI: 10.1016/j.cobme.2020.100260] [Reference Citation Analysis]
10 Aydin A, Cebi G, Demirtas ZE, Erkus H, Kucukay A, Ok M, Sakalli L, Alpdagtas S, Gunduz O, Ustundag CB. Combating COVID-19 with tissue engineering: a review. Emergent Mater 2020;:1-21. [PMID: 33235976 DOI: 10.1007/s42247-020-00138-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Wang J, Cheng Y, Wang H, Wang Y, Zhang K, Fan C, Wang H, Mo X. Biomimetic and hierarchical nerve conduits from multifunctional nanofibers for guided peripheral nerve regeneration. Acta Biomater 2020;117:180-91. [PMID: 33007489 DOI: 10.1016/j.actbio.2020.09.037] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
12 Hayat U, Raza A, Wang J. Preparation of Zein/PVP based conduits with tunable degradation. Polymer Degradation and Stability 2020;181:109303. [DOI: 10.1016/j.polymdegradstab.2020.109303] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Pérez-guzmán CJ, Castro-muñoz R. A Review of Zein as a Potential Biopolymer for Tissue Engineering and Nanotechnological Applications. Processes 2020;8:1376. [DOI: 10.3390/pr8111376] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
14 Fornasari BE, Carta G, Gambarotta G, Raimondo S. Natural-Based Biomaterials for Peripheral Nerve Injury Repair. Front Bioeng Biotechnol 2020;8:554257. [PMID: 33178670 DOI: 10.3389/fbioe.2020.554257] [Cited by in Crossref: 7] [Cited by in F6Publishing: 24] [Article Influence: 3.5] [Reference Citation Analysis]
15 Fang J, Hsu H, Hsu R, Peng C, Lu Y, Chen Y, Chen S, Hu S. 4D printing of stretchable nanocookie@conduit material hosting biocues and magnetoelectric stimulation for neurite sprouting. NPG Asia Mater 2020;12. [DOI: 10.1038/s41427-020-00244-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
16 Raza A, Hayat U, Wang HJ, Wang JY. Preparation and evaluation of captopril loaded gastro-retentive zein based porous floating tablets. Int J Pharm 2020;579:119185. [PMID: 32112929 DOI: 10.1016/j.ijpharm.2020.119185] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
17 Hayat U, Raza A, Wang HJ, Wang JY. Preparation of ciprofloxacin loaded zein conduits with good mechanical properties and antibacterial activity. Mater Sci Eng C Mater Biol Appl 2020;111:110766. [PMID: 32279795 DOI: 10.1016/j.msec.2020.110766] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Zhang D, Yao Y, Duan Y, Yu X, Shi H, Nakkala JR, Zuo X, Hong L, Mao Z, Gao C. Surface-Anchored Graphene Oxide Nanosheets on Cell-Scale Micropatterned Poly( d , l -lactide- co -caprolactone) Conduits Promote Peripheral Nerve Regeneration. ACS Appl Mater Interfaces 2020;12:7915-30. [DOI: 10.1021/acsami.9b20321] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
19 Amani H, Kazerooni H, Hassanpoor H, Akbarzadeh A, Pazoki-Toroudi H. Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review. Artif Cells Nanomed Biotechnol 2019;47:3524-39. [PMID: 31437011 DOI: 10.1080/21691401.2019.1639723] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 15.5] [Reference Citation Analysis]
20 Zhou B, Pu Y, Lin H, Yue W, Yin H, Yin Y, Ren W, Zhao C, Chen Y, Xu H. In situ phase-changeable 2D MXene/zein bio-injection for shear wave elastography-guided tumor ablation in NIR-II bio-window. J Mater Chem B 2020;8:5257-66. [DOI: 10.1039/d0tb00519c] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
21 Rao F, Wang Y, Zhang D, Lu C, Cao Z, Sui J, Wu M, Zhang Y, Pi W, Wang B, Kou Y, Wang X, Zhang P, Jiang B. Aligned chitosan nanofiber hydrogel grafted with peptides mimicking bioactive brain-derived neurotrophic factor and vascular endothelial growth factor repair long-distance sciatic nerve defects in rats. Theranostics 2020;10:1590-603. [PMID: 32042324 DOI: 10.7150/thno.36272] [Cited by in Crossref: 50] [Cited by in F6Publishing: 55] [Article Influence: 25.0] [Reference Citation Analysis]
22 Gong H, Fei H, Xu Q, Gou M, Chen HH. 3D‐engineered GelMA conduit filled with ECM promotes regeneration of peripheral nerve. J Biomed Mater Res 2020;108:805-13. [DOI: 10.1002/jbm.a.36859] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
23 Jahangirian H, Azizi S, Rafiee-Moghaddam R, Baratvand B, Webster TJ. Status of Plant Protein-Based Green Scaffolds for Regenerative Medicine Applications. Biomolecules 2019;9:E619. [PMID: 31627453 DOI: 10.3390/biom9100619] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
24 Tao J, He Y, Wang S, Mao J. 3D-printed nerve conduit with vascular networks to promote peripheral nerve regeneration. Med Hypotheses 2019;133:109395. [PMID: 31522108 DOI: 10.1016/j.mehy.2019.109395] [Reference Citation Analysis]
25 Sochilina AV, Budylin NY, Gamisonia AM, Chalykh AE, Zubov VP, Vikhrov AA. Multichannel hydrogel based on a chitosan-poly(vinyl alcohol) composition for directed growth of animal cells. Colloids Surf B Biointerfaces 2019;184:110495. [PMID: 31539750 DOI: 10.1016/j.colsurfb.2019.110495] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Jahromi M, Razavi S, Bakhtiari A. The advances in nerve tissue engineering: From fabrication of nerve conduit to in vivo nerve regeneration assays. J Tissue Eng Regen Med 2019;13:2077-100. [PMID: 31350868 DOI: 10.1002/term.2945] [Cited by in Crossref: 8] [Cited by in F6Publishing: 21] [Article Influence: 2.7] [Reference Citation Analysis]
27 Lotfi L, Khakbiz M, Moosazadeh Moghaddam M, Bonakdar S. A biomaterials approach to Schwann cell development in neural tissue engineering. J Biomed Mater Res 2019;107:2425-46. [DOI: 10.1002/jbm.a.36749] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
28 Monfared A, Ghaee A, Ebrahimi‐barough S. Preparation and characterisation of zein/polyphenol nanofibres for nerve tissue regeneration. IET nanobiotechnol 2019;13:571-7. [DOI: 10.1049/iet-nbt.2018.5368] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
29 Wang G, Wu W, Yang H, Zhang P, Wang J. Intact polyaniline coating as a conductive guidance is beneficial to repairing sciatic nerve injury. J Biomed Mater Res 2019;108:128-42. [DOI: 10.1002/jbm.b.34372] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
30 Zhang S, Sanjairaj V, Chong GL, Fuh YHJ, Lu WF. Computational Design and Optimization of Nerve Guidance Conduits for Improved Mechanical Properties and Permeability. J Biomech Eng 2019. [PMID: 30835270 DOI: 10.1115/1.4043036] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
31 Jiang Z, Song Y, Qiao J, Yang Y, Zhang W, Liu W, Han B. Rat sciatic nerve regeneration across a 10-mm defect bridged by a chitin/CM-chitosan artificial nerve graft. Int J Biol Macromol 2019;129:997-1005. [PMID: 30772408 DOI: 10.1016/j.ijbiomac.2019.02.080] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
32 Zhang L, Yang W, Xie H, Wang H, Wang J, Su Q, Li X, Song Y, Wang G, Wang L, Wang Z. Sericin Nerve Guidance Conduit Delivering Therapeutically Repurposed Clobetasol for Functional and Structural Regeneration of Transected Peripheral Nerves. ACS Biomater Sci Eng 2019;5:1426-39. [PMID: 33405618 DOI: 10.1021/acsbiomaterials.8b01297] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
33 Zhang L, Xu L, Li G, Yang Y. Fabrication of high-strength mecobalamin loaded aligned silk fibroin scaffolds for guiding neuronal orientation. Colloids and Surfaces B: Biointerfaces 2019;173:689-97. [DOI: 10.1016/j.colsurfb.2018.10.053] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
34 Guo X, Liu G, He Q, Xu H, Yu Y, Ke C, Ming X, Zhao M, Wang X, Huang Z, Xu P. The Study of Nerve Conduit with Biocompatibility and Electrical Stimulation Effect. J Wuhan Univ Technol -Mat Sci Edit 2018;33:1530-9. [DOI: 10.1007/s11595-018-2002-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Guo X, Xu H, He Q, Yu Y, Ming X, Zheng F, Wang X, Huang Z, Zhao M, Xu P. Preparation and characterization of conductive poly-dl-lactic-acid/tetra-aniline conduit for peripheral nerve regeneration. Journal of Bioactive and Compatible Polymers 2019;34:190-208. [DOI: 10.1177/0883911518819600] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
36 Pawelec KM, Hix J, Shapiro EM, Sakamoto J. The mechanics of scaling-up multichannel scaffold technology for clinical nerve repair. J Mech Behav Biomed Mater 2019;91:247-54. [PMID: 30597378 DOI: 10.1016/j.jmbbm.2018.12.016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
37 Lian H, Liu X, Meng Z. Enhanced mechanical and osteogenic differentiation performance of hydroxyapatite/zein composite for bone tissue engineering. J Mater Sci 2019;54:719-29. [DOI: 10.1007/s10853-018-2796-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
38 Pawelec KM, Koffler J, Shahriari D, Galvan A, Tuszynski MH, Sakamoto J. Microstructure and in vivo characterization of multi-channel nerve guidance scaffolds. Biomed Mater 2018;13:044104. [PMID: 29411711 DOI: 10.1088/1748-605X/aaad85] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
39 Cangellaris OV, Gillette MU. Biomaterials for Enhancing Neuronal Repair. Front Mater 2018;5:21. [DOI: 10.3389/fmats.2018.00021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]