BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang C, Du L, Sun P, Shen L, Zhu J, Pang K, Wu X. Construction of tissue-engineered full-thickness cornea substitute using limbal epithelial cell-like and corneal endothelial cell-like cells derived from human embryonic stem cells. Biomaterials 2017;124:180-94. [PMID: 28199886 DOI: 10.1016/j.biomaterials.2017.02.003] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Serrano A, Osei KA, Huertas-bello M, Sabater AL. The Potential of Stem Cells as Treatment for Ocular Surface Diseases. Curr Ophthalmol Rep 2022. [DOI: 10.1007/s40135-022-00303-6] [Reference Citation Analysis]
2 Wang Y, Xu L, Zhao J, Liang J, Zhang Z, Li Q, Zhang J, Wan P, Wu Z. Reconstructing auto tissue engineering lamellar cornea with aspartic acid modified acellular porcine corneal stroma and preconditioned limbal stem cell for corneal regeneration. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121745] [Reference Citation Analysis]
3 Sun P, Shen L, Li YB, Du LQ, Wu XY. Long-term observation after transplantation of cultured human corneal endothelial cells for corneal endothelial dysfunction. Stem Cell Res Ther 2022;13:228. [PMID: 35659288 DOI: 10.1186/s13287-022-02889-x] [Reference Citation Analysis]
4 Kharbikar BN, Mohindra P, Desai TA. Biomaterials to enhance stem cell transplantation. Cell Stem Cell 2022;29:692-721. [PMID: 35483364 DOI: 10.1016/j.stem.2022.04.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Heydarian M, Rühl E, Rawal R, Kozjak-pavlovic V. Tissue Models for Neisseria gonorrhoeae Research—From 2D to 3D. Front Cell Infect Microbiol 2022;12:840122. [DOI: 10.3389/fcimb.2022.840122] [Reference Citation Analysis]
6 Li Z, Duan H, Jia Y, Zhao C, Li W, Wang X, Gong Y, Dong C, Ma B, Dou S, Zhang B, Li D, Cao Y, Xie L, Zhou Q, Shi W. Long-term corneal recovery by simultaneous delivery of hPSC-derived corneal endothelial precursors and nicotinamide. J Clin Invest 2022;132:e146658. [PMID: 34981789 DOI: 10.1172/JCI146658] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
7 Jameson JF, Pacheco MO, Nguyen HH, Phelps EA, Stoppel WL. Recent Advances in Natural Materials for Corneal Tissue Engineering. Bioengineering (Basel) 2021;8:161. [PMID: 34821727 DOI: 10.3390/bioengineering8110161] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 Wang X, Dong C, Zhou Q, Duan H, Zou D, Gong Y, Ma B, Li Z, Shi W. Poly(ADP-ribose) polymerase inhibitor PJ34 protects against UVA-induced oxidative damage in corneal endothelium. Apoptosis 2021;26:600-11. [PMID: 34581992 DOI: 10.1007/s10495-021-01690-0] [Reference Citation Analysis]
9 Calonge M, Nieto-Miguel T, de la Mata A, Galindo S, Herreras JM, López-Paniagua M. Goals and Challenges of Stem Cell-Based Therapy for Corneal Blindness Due to Limbal Deficiency. Pharmaceutics 2021;13:1483. [PMID: 34575560 DOI: 10.3390/pharmaceutics13091483] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
10 Shen L, Sun P, Du L, Zhu J, Ju C, Guo H, Wu X. Long-Term Observation and Sequencing Analysis of SKPs-Derived Corneal Endothelial Cell-Like Cells for Treating Corneal Endothelial Dysfunction. Cell Transplant 2021;30:9636897211017830. [PMID: 34053246 DOI: 10.1177/09636897211017830] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
11 Gong Y, Duan H, Wang X, Zhao C, Li W, Dong C, Li Z, Zhou Q. Transplantation of human induced pluripotent stem cell-derived neural crest cells for corneal endothelial regeneration. Stem Cell Res Ther 2021;12:214. [PMID: 33781330 DOI: 10.1186/s13287-021-02267-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
12 Liu XN, Mi SL, Chen Y, Wang Y. Corneal stromal mesenchymal stem cells: reconstructing a bioactive cornea and repairing the corneal limbus and stromal microenvironment. Int J Ophthalmol 2021;14:448-55. [PMID: 33747824 DOI: 10.18240/ijo.2021.03.19] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
13 Parekh M, Romano V, Hassanin K, Testa V, Wongvisavavit R, Ferrari S, Haneef A, Willoughby C, Ponzin D, Jhanji V, Sharma N, Daniels J, Kaye SB, Ahmad S, Levis HJ. Biomaterials for corneal endothelial cell culture and tissue engineering. J Tissue Eng 2021;12:2041731421990536. [PMID: 33643603 DOI: 10.1177/2041731421990536] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
14 Nosrati H, Abpeikar Z, Mahmoudian ZG, Zafari M, Majidi J, Alizadeh A, Moradi L, Asadpour S. Corneal epithelium tissue engineering: recent advances in regeneration and replacement of corneal surface. Regen Med 2020;15:2029-44. [PMID: 33169642 DOI: 10.2217/rme-2019-0055] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
15 Khalili M, Asadi M, Kahroba H, Soleyman MR, Andre H, Alizadeh E. Corneal endothelium tissue engineering: An evolution of signaling molecules, cells, and scaffolds toward 3D bioprinting and cell sheets. J Cell Physiol 2020. [PMID: 33090510 DOI: 10.1002/jcp.30085] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
16 Ghareeb AE, Lako M, Figueiredo FC. Recent Advances in Stem Cell Therapy for Limbal Stem Cell Deficiency: A Narrative Review. Ophthalmol Ther 2020;9:809-31. [PMID: 32970311 DOI: 10.1007/s40123-020-00305-2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
17 Shiju TM, Carlos de Oliveira R, Wilson SE. 3D in vitro corneal models: A review of current technologies. Exp Eye Res 2020;200:108213. [PMID: 32890484 DOI: 10.1016/j.exer.2020.108213] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
18 Wang F, Shi W, Li H, Wang H, Sun D, Zhao L, Yang L, Liu T, Zhou Q, Xie L. Decellularized porcine cornea-derived hydrogels for the regeneration of epithelium and stroma in focal corneal defects. Ocul Surf 2020;18:748-60. [PMID: 32841745 DOI: 10.1016/j.jtos.2020.07.020] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
19 Zhao C, Zhou Q, Duan H, Wang X, Jia Y, Gong Y, Li W, Dong C, Li Z, Shi W. Laminin 511 Precoating Promotes the Functional Recovery of Transplanted Corneal Endothelial Cells. Tissue Eng Part A 2020;26:1158-68. [PMID: 32495687 DOI: 10.1089/ten.TEA.2020.0047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
20 Tsao Y, Cheng C, Wu W, Chen H. Bioengineering of Human Corneal Endothelial Cells from Single- to Four-Dimensional Cultures. Curr Ophthalmol Rep 2020;8:172-84. [DOI: 10.1007/s40135-020-00244-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
21 da Mata Martins TM, da Silva Cunha P, Rodrigues MA, de Carvalho JL, de Souza JE, de Carvalho Oliveira JA, Gomes DA, de Goes AM. Epithelial basement membrane of human decellularized cornea as a suitable substrate for differentiation of embryonic stem cells into corneal epithelial-like cells. Mater Sci Eng C Mater Biol Appl 2020;116:111215. [PMID: 32806330 DOI: 10.1016/j.msec.2020.111215] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
22 McKay TB, Ford A, Wang S, Cairns DM, Parker RN, Deardorff PM, Ghezzi CE, Kaplan DL. Assembly and Application of a Three-Dimensional Human Corneal Tissue Model. Curr Protoc Toxicol 2019;81:e84. [PMID: 31529796 DOI: 10.1002/cptx.84] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
23 Wang K, Man K, Liu J, Liu Y, Chen Q, Zhou Y, Yang Y. Microphysiological Systems: Design, Fabrication, and Applications. ACS Biomater Sci Eng 2020;6:3231-57. [PMID: 33204830 DOI: 10.1021/acsbiomaterials.9b01667] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
24 Wang X, Majumdar S, Soiberman U, Webb JN, Chung L, Scarcelli G, Elisseeff JH. Multifunctional synthetic Bowman's membrane-stromal biomimetic for corneal reconstruction. Biomaterials 2020;241:119880. [PMID: 32097748 DOI: 10.1016/j.biomaterials.2020.119880] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
25 Wang Q, Zhou H, Sun Y, Cao C, Pang K. Modified acellular porcine corneal matrix in deep lamellar transplantation of rabbit cornea. J Biomater Appl 2020;34:1092-104. [PMID: 31896290 DOI: 10.1177/0885328219898372] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
26 Huang C, Albon J, V. Ljubimov A, Grant MB. Stem cells in the eye. Principles of Tissue Engineering 2020. [DOI: 10.1016/b978-0-12-818422-6.00062-9] [Reference Citation Analysis]
27 McKay TB, Karamichos D, Hutcheon AEK, Guo X, Zieske JD. Corneal Epithelial-Stromal Fibroblast Constructs to Study Cell-Cell Communication in Vitro. Bioengineering (Basel) 2019;6:E110. [PMID: 31817298 DOI: 10.3390/bioengineering6040110] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
28 Lagali N. Corneal Stromal Regeneration: Current Status and Future Therapeutic Potential. Curr Eye Res 2020;45:278-90. [PMID: 31537127 DOI: 10.1080/02713683.2019.1663874] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
29 Shi W, Zhou Q, Gao H, Li S, Dong M, Wang T, Jia Y, Dong C, Wang X, Guo Z, Zhao L, Hu X, Xie L. Protectively Decellularized Porcine Cornea versus Human Donor Cornea for Lamellar Transplantation. Adv Funct Mater 2019;29:1902491. [DOI: 10.1002/adfm.201902491] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
30 Seow WY, Kandasamy K, Peh GSL, Mehta JS, Sun W. Ultrathin, Strong, and Cell-Adhesive Agarose-Based Membranes Engineered as Substrates for Corneal Endothelial Cells. ACS Biomater Sci Eng 2019;5:4067-76. [DOI: 10.1021/acsbiomaterials.9b00610] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
31 Higuchi A, Suresh Kumar S, Benelli G, Ling Q, Li H, Alarfaj AA, Munusamy MA, Sung T, Chang Y, Murugan K. Biomaterials used in stem cell therapy for spinal cord injury. Progress in Materials Science 2019;103:374-424. [DOI: 10.1016/j.pmatsci.2019.02.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
32 White IA, Sabater AL. Current strategies for human corneal endothelial regeneration. Regen Med 2019;14:257-61. [PMID: 31070511 DOI: 10.2217/rme-2018-0105] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
33 Lachaud CC, Hmadcha A, Soria B. Corneal Regeneration: Use of Extracorneal Stem Cells. In: Alió JL, Alió del Barrio JL, Arnalich-montiel F, editors. Corneal Regeneration. Cham: Springer International Publishing; 2019. pp. 123-44. [DOI: 10.1007/978-3-030-01304-2_9] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
34 Chen L, Sung T, Lee HH, Higuchi A, Su H, Lin K, Huang Y, Ling Q, Kumar SS, Alarfaj AA, Munusamy MA, Nasu M, Chen D, Hsu S, Chang Y, Lee K, Wang H, Umezawa A. Xeno-free and feeder-free culture and differentiation of human embryonic stem cells on recombinant vitronectin-grafted hydrogels. Biomater Sci 2019;7:4345-62. [DOI: 10.1039/c9bm00418a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
35 Sasamoto Y, Oie Y, Nishida K. Corneal Stem Cell-Based Therapies. Essentials in Ophthalmology 2019. [DOI: 10.1007/978-3-030-01304-2_11] [Reference Citation Analysis]
36 Chakrabarty K, Shetty R, Ghosh A. Corneal cell therapy: with iPSCs, it is no more a far-sight. Stem Cell Res Ther. 2018;9:287. [PMID: 30359313 DOI: 10.1186/s13287-018-1036-5] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 7.6] [Reference Citation Analysis]
37 Jia Y, Li W, Duan H, Li Z, Zhou Q, Shi W. Mini-Sheet Injection for Cultured Corneal Endothelial Transplantation. Tissue Engineering Part C: Methods 2018;24:474-9. [DOI: 10.1089/ten.tec.2018.0077] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
38 Palchesko RN, Carrasquilla SD, Feinberg AW. Natural Biomaterials for Corneal Tissue Engineering, Repair, and Regeneration. Adv Healthc Mater 2018;7:e1701434. [PMID: 29845780 DOI: 10.1002/adhm.201701434] [Cited by in Crossref: 40] [Cited by in F6Publishing: 48] [Article Influence: 8.0] [Reference Citation Analysis]
39 Chen Z, You J, Liu X, Cooper S, Hodge C, Sutton G, Crook JM, Wallace GG. Biomaterials for corneal bioengineering. Biomed Mater 2018;13:032002. [PMID: 29021411 DOI: 10.1088/1748-605X/aa92d2] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 11.8] [Reference Citation Analysis]
40 Sun P, Shen L, Zhang C, Du L, Wu X. Promoting the expansion and function of human corneal endothelial cells with an orbital adipose-derived stem cell-conditioned medium. Stem Cell Res Ther 2017;8:287. [PMID: 29262856 DOI: 10.1186/s13287-017-0737-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]