BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Patel JM, Vartabedian VF, Bozeman EN, Caoyonan BE, Srivatsan S, Pack CD, Dey P, D'Souza MJ, Yang L, Selvaraj P. Plasma membrane vesicles decorated with glycolipid-anchored antigens and adjuvants via protein transfer as an antigen delivery platform for inhibition of tumor growth. Biomaterials 2016;74:231-44. [PMID: 26461116 DOI: 10.1016/j.biomaterials.2015.09.031] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.6] [Reference Citation Analysis]
Number Citing Articles
1 Hu X, Wu T, Bao Y, Zhang Z. Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense. J Control Release 2017;256:26-45. [PMID: 28434891 DOI: 10.1016/j.jconrel.2017.04.026] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 5.6] [Reference Citation Analysis]
2 Bommireddy R, Munoz LE, Kumari A, Huang L, Fan Y, Monterroza L, Pack CD, Ramachandiran S, Reddy SJC, Kim J, Chen ZG, Saba NF, Shin DM, Selvaraj P. Tumor Membrane Vesicle Vaccine Augments the Efficacy of Anti-PD1 Antibody in Immune Checkpoint Inhibitor-Resistant Squamous Cell Carcinoma Models of Head and Neck Cancer. Vaccines (Basel) 2020;8:E182. [PMID: 32295135 DOI: 10.3390/vaccines8020182] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
3 Martins ÁM, Ramos CC, Freitas D, Reis CA. Glycosylation of Cancer Extracellular Vesicles: Capture Strategies, Functional Roles and Potential Clinical Applications. Cells 2021;10:109. [PMID: 33430152 DOI: 10.3390/cells10010109] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
4 Hong Y, Nam G, Koh E, Jeon S, Kim GB, Jeong C, Kim D, Yang Y, Kim I. Exosome as a Vehicle for Delivery of Membrane Protein Therapeutics, PH20, for Enhanced Tumor Penetration and Antitumor Efficacy. Adv Funct Mater 2018;28:1703074. [DOI: 10.1002/adfm.201703074] [Cited by in Crossref: 61] [Cited by in F6Publishing: 31] [Article Influence: 12.2] [Reference Citation Analysis]
5 Ram Kumar PS, Rencilin CF, Sundar K. Emerging nanomaterials for cancer immunotherapy. Exploration of Medicine 2021;2:208-31. [DOI: 10.37349/emed.2021.00043] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Grimaudo MA. Nanotechnology for the Development of Nanovaccines in Cancer Immunotherapy. Adv Exp Med Biol 2021;1295:303-15. [PMID: 33543465 DOI: 10.1007/978-3-030-58174-9_13] [Reference Citation Analysis]
7 Cao QM, Ni YY, Cao D, Tian D, Yugo DM, Heffron CL, Overend C, Subramaniam S, Rogers AJ, Catanzaro N, LeRoith T, Roberts PC, Meng XJ. Recombinant Porcine Reproductive and Respiratory Syndrome Virus Expressing Membrane-Bound Interleukin-15 as an Immunomodulatory Adjuvant Enhances NK and γδ T Cell Responses and Confers Heterologous Protection. J Virol 2018;92:e00007-18. [PMID: 29643245 DOI: 10.1128/JVI.00007-18] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
8 Wang F, Xiao J, Chen S, Sun H, Yang B, Jiang J, Zhou X, Du J. Polymer Vesicles: Modular Platforms for Cancer Theranostics. Adv Mater 2018;30:e1705674. [PMID: 29450915 DOI: 10.1002/adma.201705674] [Cited by in Crossref: 73] [Cited by in F6Publishing: 63] [Article Influence: 18.3] [Reference Citation Analysis]
9 Pack CD, Bommireddy R, Munoz LE, Patel JM, Bozeman EN, Dey P, Radhakrishnan V, Vartabedian VF, Venkat K, Ramachandiran S, Reddy SJC, Selvaraj P. Tumor membrane-based vaccine immunotherapy in combination with anti-CTLA-4 antibody confers protection against immune checkpoint resistant murine triple-negative breast cancer. Hum Vaccin Immunother 2020;16:3184-93. [PMID: 32530786 DOI: 10.1080/21645515.2020.1754691] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Fontana F, Liu D, Hirvonen J, Santos HA. Delivery of therapeutics with nanoparticles: what's new in cancer immunotherapy? Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017;9. [PMID: 27470448 DOI: 10.1002/wnan.1421] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 8.0] [Reference Citation Analysis]
11 Srivatsav AT, Kapoor S. The Emerging World of Membrane Vesicles: Functional Relevance, Theranostic Avenues and Tools for Investigating Membrane Function. Front Mol Biosci 2021;8:640355. [PMID: 33968983 DOI: 10.3389/fmolb.2021.640355] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Munoz LE, Huang L, Bommireddy R, Sharma R, Monterroza L, Guin RN, Samaranayake SG, Pack CD, Ramachandiran S, Reddy SJC, Shanmugam M, Selvaraj P. Metformin reduces PD-L1 on tumor cells and enhances the anti-tumor immune response generated by vaccine immunotherapy. J Immunother Cancer 2021;9:e002614. [PMID: 34815353 DOI: 10.1136/jitc-2021-002614] [Reference Citation Analysis]
13 Fontana F, Figueiredo P, Bauleth-ramos T, Correia A, Santos HA. Immunostimulation and Immunosuppression: Nanotechnology on the Brink. Small Methods 2018;2:1700347. [DOI: 10.1002/smtd.201700347] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
14 Heider S, Kleinberger S, Kochan F, Dangerfield JA, Metzner C. Immune Protection of Retroviral Vectors Upon Molecular Painting with the Complement Regulatory Protein CD59. Mol Biotechnol 2016;58:480-8. [PMID: 27170144 DOI: 10.1007/s12033-016-9944-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
15 Qian H, Liu B, Jiang X. Application of nanomaterials in cancer immunotherapy. Materials Today Chemistry 2018;7:53-64. [DOI: 10.1016/j.mtchem.2018.01.001] [Cited by in Crossref: 40] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
16 Donninger H, Li C, Eaton JW, Yaddanapudi K. Cancer Vaccines: Promising Therapeutics or an Unattainable Dream. Vaccines (Basel) 2021;9:668. [PMID: 34207062 DOI: 10.3390/vaccines9060668] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Raza F, Zafar H, Zhang S, Kamal Z, Su J, Yuan WE, Mingfeng Q. Recent Advances in Cell Membrane-Derived Biomimetic Nanotechnology for Cancer Immunotherapy. Adv Healthc Mater 2021;10:e2002081. [PMID: 33586322 DOI: 10.1002/adhm.202002081] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 21.0] [Reference Citation Analysis]
18 Zhuang J, Holay M, Park JH, Fang RH, Zhang J, Zhang L. Nanoparticle Delivery of Immunostimulatory Agents for Cancer Immunotherapy. Theranostics 2019;9:7826-48. [PMID: 31695803 DOI: 10.7150/thno.37216] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 10.7] [Reference Citation Analysis]
19 Munoz LE, Monterroza L, Bommireddy R, Shafizadeh Y, Pack CD, Ramachandiran S, Reddy SJC, Selvaraj P. Dendritic Cells Pulsed with Cytokine-Adjuvanted Tumor Membrane Vesicles Inhibit Tumor Growth in HER2-Positive and Triple Negative Breast Cancer Models. Int J Mol Sci 2021;22:8377. [PMID: 34445092 DOI: 10.3390/ijms22168377] [Reference Citation Analysis]
20 Wang Z, Liu W, Shi J, Chen N, Fan C. Nanoscale delivery systems for cancer immunotherapy. Mater Horiz 2018;5:344-62. [DOI: 10.1039/c7mh00991g] [Cited by in Crossref: 37] [Article Influence: 9.3] [Reference Citation Analysis]
21 Zhou H, Fan Z, Lemons PK, Cheng H. A Facile Approach to Functionalize Cell Membrane-Coated Nanoparticles. Theranostics 2016;6:1012-22. [PMID: 27217834 DOI: 10.7150/thno.15095] [Cited by in Crossref: 73] [Cited by in F6Publishing: 72] [Article Influence: 12.2] [Reference Citation Analysis]
22 Skinkle AD, Levental KR, Levental I. Cell-Derived Plasma Membrane Vesicles Are Permeable to Hydrophilic Macromolecules. Biophys J 2020;118:1292-300. [PMID: 32053777 DOI: 10.1016/j.bpj.2019.12.040] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
23 Das A, Ali N. Nanovaccine: an emerging strategy. Expert Rev Vaccines 2021;20:1273-90. [PMID: 34550859 DOI: 10.1080/14760584.2021.1984890] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Liu X, Wu F, Ji Y, Yin L. Recent Advances in Anti-cancer Protein/Peptide Delivery. Bioconjugate Chem 2019;30:305-24. [DOI: 10.1021/acs.bioconjchem.8b00750] [Cited by in Crossref: 52] [Cited by in F6Publishing: 44] [Article Influence: 13.0] [Reference Citation Analysis]
25 Heider S, Dangerfield JA, Metzner C. Biomedical applications of glycosylphosphatidylinositol-anchored proteins. J Lipid Res 2016;57:1778-88. [PMID: 27542385 DOI: 10.1194/jlr.R070201] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
26 Wen Z, Liu F, Chen Q, Xu Y, Li H, Sun S. Recent development in biodegradable nanovehicle delivery system-assisted immunotherapy. Biomater Sci 2019;7:4414-43. [DOI: 10.1039/c9bm00961b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]