BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang X, Chen Y, Dahmani FZ, Yin L, Zhou J, Yao J. Amphiphilic carboxymethyl chitosan-quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel. Biomaterials 2014;35:7654-65. [DOI: 10.1016/j.biomaterials.2014.05.053] [Cited by in Crossref: 104] [Cited by in F6Publishing: 105] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang X, Zheng Y, Qiu L, Ouyang H, Xu X, Xu W, Zhang Y, Xu W. Evaluation and antitumor mechanism of functionalized chitosan-based polymeric micelles for oral delivery of paclitaxel. Int J Pharm 2022;625:122138. [PMID: 36029990 DOI: 10.1016/j.ijpharm.2022.122138] [Reference Citation Analysis]
2 Ren Q, Zhao S, Zhu Y, Mao J, Liu X, Ye J, Zhang Q, Xu X. Supramolecular aggregates of myricetin improve its bioavailability and its role in counteracting alcoholism. Journal of Drug Delivery Science and Technology 2022;74:103515. [DOI: 10.1016/j.jddst.2022.103515] [Reference Citation Analysis]
3 Jiao Y, Yang Y, Zhou L, Chen D, Lu Y. Two Natural Flavonoid Substituted Polysaccharides from Tamarix chinensis: Structural Characterization and Anticomplement Activities. Molecules 2022;27:4532. [PMID: 35889403 DOI: 10.3390/molecules27144532] [Reference Citation Analysis]
4 Zhou C, Zhang L, Yang Z, Pan Q, He Z, Wang C, Liu Y, Song S, Yang Z, Chen Y, Li P. Synthesis and characterization of carboxymethyl chitosan/epoxidized soybean oil based conjugate catalyed by UV light, and its application as drug carrier for fusarium wilt. International Journal of Biological Macromolecules 2022;212:11-9. [DOI: 10.1016/j.ijbiomac.2022.05.118] [Reference Citation Analysis]
5 Liu W, Han Y, Xin X, Chen L, Liu Y, Liu C, Zhang X, Jin M, Jin J, Gao Z, Huang W. Biomimetic and temporal-controlled nanocarriers with ileum transporter targeting for achieving oral administration of chemotherapeutic drugs. J Nanobiotechnology 2022;20:281. [PMID: 35705976 DOI: 10.1186/s12951-022-01460-3] [Reference Citation Analysis]
6 Wang Y, Zhang J, Zhao Y, Pu M, Song X, Yu L, Yan X, Wu J, He Z. Innovations and challenges of polyphenol-based smart drug delivery systems. Nano Res . [DOI: 10.1007/s12274-022-4430-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydrate Polymers 2022;284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
8 Wiggers HJ, Chevallier P, Copes F, Simch FH, da Silva Veloso F, Genevro GM, Mantovani D. Quercetin-Crosslinked Chitosan Films for Controlled Release of Antimicrobial Drugs. Front Bioeng Biotechnol 2022;10:814162. [DOI: 10.3389/fbioe.2022.814162] [Reference Citation Analysis]
9 Ganthala PD, Alavala S, Chella N, Andugulapati SB, Bathini NB, Sistla R. Co-encapsulated nanoparticles of Erlotinib and Quercetin for targeting lung cancer through nuclear EGFR and PI3K/AKT inhibition. Colloids Surf B Biointerfaces 2022;211:112305. [PMID: 34998178 DOI: 10.1016/j.colsurfb.2021.112305] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
10 Yi C, Li Y, Zhang S, Fan H, Cheng Z. CSH/SBE-β-CD nanoparticles: controlled synthesis and application for loading and pH-responsive drug release. New J Chem . [DOI: 10.1039/d2nj01283a] [Reference Citation Analysis]
11 Wang HL, Sun J, Tian CT, He ZG. Probing the new strategy for the oral formulations of taxanes: changing the method with the situation. Chin J Nat Med 2021;19:656-65. [PMID: 34561076 DOI: 10.1016/S1875-5364(21)60096-1] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Xiong W, Xiong SH, Chen QL, Linghu KG, Zhao GD, Chu JMT, Wong GTC, Li J, Hu YJ, Wang YT, Yu H. Brij-functionalized chitosan nanocarrier system enhances the intestinal permeability of P-glycoprotein substrate-like drugs. Carbohydr Polym 2021;266:118112. [PMID: 34044929 DOI: 10.1016/j.carbpol.2021.118112] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
13 Bao S, Zhang Y, Ye J, Zhu Y, Li R, Xu X, Zhang Q. Self-assembled micelles enhance the oral delivery of curcumin for the management of alcohol-induced tissue injury. Pharm Dev Technol 2021;26:880-9. [PMID: 34238120 DOI: 10.1080/10837450.2021.1950185] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Liao W, Badri W, Dumas E, Ghnimi S, Elaissari A, Saurel R, Gharsallaoui A. Nanoencapsulation of Essential Oils as Natural Food Antimicrobial Agents: An Overview. Applied Sciences 2021;11:5778. [DOI: 10.3390/app11135778] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
15 Pathomthongtaweechai N, Muanprasat C. Potential Applications of Chitosan-Based Nanomaterials to Surpass the Gastrointestinal Physiological Obstacles and Enhance the Intestinal Drug Absorption. Pharmaceutics 2021;13:887. [PMID: 34203816 DOI: 10.3390/pharmaceutics13060887] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
16 Zhu X, Yu Z, Feng L, Deng L, Fang Z, Liu Z, Li Y, Wu X, Qin L, Guo R, Zheng Y. Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer. Carbohydr Polym 2021;268:118237. [PMID: 34127219 DOI: 10.1016/j.carbpol.2021.118237] [Cited by in Crossref: 1] [Cited by in F6Publishing: 17] [Article Influence: 1.0] [Reference Citation Analysis]
17 Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater 2021;:1-18. [PMID: 34026278 DOI: 10.1038/s41578-021-00315-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 53] [Article Influence: 6.0] [Reference Citation Analysis]
18 Zhang Y, Zhang W, Wang Y, Zhu J, Zhou M, Peng C, He Z, Sun J, Li Z, Gui S. Emerging nanotaxanes for cancer therapy. Biomaterials 2021;272:120790. [PMID: 33836293 DOI: 10.1016/j.biomaterials.2021.120790] [Cited by in Crossref: 1] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
19 Ye J, Bao S, Zhao S, Zhu Y, Ren Q, Li R, Xu X, Zhang Q. Self-Assembled Micelles Improve the Oral Bioavailability of Dihydromyricetin and Anti-Acute Alcoholism Activity. AAPS PharmSciTech 2021;22:111. [PMID: 33748928 DOI: 10.1208/s12249-021-01983-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
20 Qin L, Wu H, Xu E, Zhang X, Guan J, Zhao R, Mao S. Exploring the potential of functional polymer-lipid hybrid nanoparticles for enhanced oral delivery of paclitaxel. Asian J Pharm Sci 2021;16:387-95. [PMID: 34276826 DOI: 10.1016/j.ajps.2021.02.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
21 Qiao Y, Wei Z, Qin T, Song R, Yu Z, Yuan Q, Du J, Zeng Q, Zong L, Duan S, Pu X. Combined nanosuspensions from two natural active ingredients for cancer therapy with reduced side effects. Chinese Chemical Letters 2021;32:2877-81. [DOI: 10.1016/j.cclet.2021.03.049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
22 Yang T, Feng J, Zhang Q, Wu W, Mo H, Huang L, Zhang W. l-Carnitine conjugated chitosan-stearic acid polymeric micelles for improving the oral bioavailability of paclitaxel. Drug Deliv 2020;27:575-84. [PMID: 32306775 DOI: 10.1080/10717544.2020.1748762] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
23 Shi X, Yang X, Liu M, Wang R, Qiu N, Liu Y, Yang H, Ji J, Zhai G. Chondroitin sulfate-based nanoparticles for enhanced chemo-photodynamic therapy overcoming multidrug resistance and lung metastasis of breast cancer. Carbohydr Polym 2021;254:117459. [PMID: 33357918 DOI: 10.1016/j.carbpol.2020.117459] [Cited by in Crossref: 6] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
24 Liu M, Fu M, Yang X, Jia G, Shi X, Ji J, Liu X, Zhai G. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids and Surfaces B: Biointerfaces 2020;196:111284. [DOI: 10.1016/j.colsurfb.2020.111284] [Cited by in Crossref: 14] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
25 Zhao Q, Wang Y, Zhang W, Wang Y, Wang S. Succinylated casein functionalized mesoporous silica nanoplatforms to overcome multiple gastrointestinal barriers. Journal of Drug Delivery Science and Technology 2020;60:102068. [DOI: 10.1016/j.jddst.2020.102068] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Qiao Y, Cao Y, Yu K, Zong L, Pu X. Preparation and antitumor evaluation of quercetin nanosuspensions with synergistic efficacy and regulating immunity. Int J Pharm 2020;589:119830. [PMID: 32877732 DOI: 10.1016/j.ijpharm.2020.119830] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
27 Ma Z, Li N, Zhang B, Hui Y, Zhang Y, Lu P, Pi J, Liu Z. Dual drug-loaded nano-platform for targeted cancer therapy: toward clinical therapeutic efficacy of multifunctionality. J Nanobiotechnology 2020;18:123. [PMID: 32887626 DOI: 10.1186/s12951-020-00681-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
28 Wang Y, Yu H, Wang S, Gai C, Cui X, Xu Z, Li W, Zhang W. Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel. Mater Sci Eng C Mater Biol Appl 2021;119:111442. [PMID: 33321583 DOI: 10.1016/j.msec.2020.111442] [Cited by in Crossref: 5] [Cited by in F6Publishing: 22] [Article Influence: 2.5] [Reference Citation Analysis]
29 Wang Y, Pi C, Feng X, Hou Y, Zhao L, Wei Y. The Influence of Nanoparticle Properties on Oral Bioavailability of Drugs. Int J Nanomedicine 2020;15:6295-310. [PMID: 32943863 DOI: 10.2147/IJN.S257269] [Cited by in Crossref: 10] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
30 Lang X, Wang T, Sun M, Chen X, Liu Y. Advances and applications of chitosan-based nanomaterials as oral delivery carriers: A review. International Journal of Biological Macromolecules 2020;154:433-45. [DOI: 10.1016/j.ijbiomac.2020.03.148] [Cited by in Crossref: 36] [Cited by in F6Publishing: 61] [Article Influence: 18.0] [Reference Citation Analysis]
31 Wang Y, Tao B, Wan Y, Sun Y, Wang L, Sun J, Li C. Drug delivery based pharmacological enhancement and current insights of quercetin with therapeutic potential against oral diseases. Biomed Pharmacother 2020;128:110372. [PMID: 32521458 DOI: 10.1016/j.biopha.2020.110372] [Cited by in Crossref: 12] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
32 Jin J, Xu M, Liu Y, Ji Z, Dai K, Zhang L, Wang L, Ye F, Chen G, Lv Z. Alginate-based composite microspheres coated by berberine simultaneously improve hemostatic and antibacterial efficacy. Colloids Surf B Biointerfaces 2020;194:111168. [PMID: 32563918 DOI: 10.1016/j.colsurfb.2020.111168] [Cited by in Crossref: 8] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
33 Zhang C, Yu X, Diao Y, Jing Y. Free Radical Grafting of Epigallocatechin Gallate onto Carboxymethyl Chitosan: Preparation, Characterization, and Application on the Preservation of Grape Juice. Food Bioprocess Technol 2020;13:807-17. [DOI: 10.1007/s11947-020-02442-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
34 Liu A, Wang H, Hou X, Ma Y, Yang G, Hou Y, Ding Y. Combinatory antitumor therapy by cascade targeting of a single drug. Acta Pharm Sin B 2020;10:667-79. [PMID: 32322469 DOI: 10.1016/j.apsb.2019.08.011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
35 Xiong Q, Wang Y, Wan J, Yuan P, Chen H, Zhang L. Facile preparation of hyaluronic acid-based quercetin nanoformulation for targeted tumor therapy. International Journal of Biological Macromolecules 2020;147:937-45. [DOI: 10.1016/j.ijbiomac.2019.10.060] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
36 Babadi D, Dadashzadeh S, Osouli M, Daryabari MS, Haeri A. Nanoformulation strategies for improving intestinal permeability of drugs: A more precise look at permeability assessment methods and pharmacokinetic properties changes. J Control Release 2020;321:669-709. [PMID: 32112856 DOI: 10.1016/j.jconrel.2020.02.041] [Cited by in Crossref: 16] [Cited by in F6Publishing: 31] [Article Influence: 8.0] [Reference Citation Analysis]
37 Jing YR, Zhou W, Wang XY. T-13 and T-26, the novel taxanes with improved oral bioavailability in rats. Sci Rep 2020;10:3211. [PMID: 32081942 DOI: 10.1038/s41598-020-60184-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
38 Zhang P, Guo H, Liu C. Fabrication of Carboxylmethyl Chitosan Nanocarrier via Self-Assembly for Efficient Delivery of Phenylethyl Resorcinol in B16 Cells. Polymers (Basel) 2020;12:E408. [PMID: 32054046 DOI: 10.3390/polym12020408] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Chen T, Tu L, Wang G, Qi N, Wu W, Zhang W, Feng J. Multi-functional chitosan polymeric micelles as oral paclitaxel delivery systems for enhanced bioavailability and anti-tumor efficacy. Int J Pharm 2020;578:119105. [PMID: 32018019 DOI: 10.1016/j.ijpharm.2020.119105] [Cited by in Crossref: 22] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
40 Diao Y, Yu X, Zhang C, Jing Y. Quercetin-grafted chitosan prepared by free radical grafting: characterization and evaluation of antioxidant and antibacterial properties. J Food Sci Technol 2020;57:2259-68. [PMID: 32431352 DOI: 10.1007/s13197-020-04263-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
41 Ashrafizadeh M, Ahmadi Z, Mohamadi N, Zarrabi A, Abasi S, Dehghannoudeh G, Tamaddondoust RN, Khanbabaei H, Mohammadinejad R, Thakur VK. Chitosan-based advanced materials for docetaxel and paclitaxel delivery: Recent advances and future directions in cancer theranostics. Int J Biol Macromol 2020;145:282-300. [PMID: 31870872 DOI: 10.1016/j.ijbiomac.2019.12.145] [Cited by in Crossref: 32] [Cited by in F6Publishing: 56] [Article Influence: 10.7] [Reference Citation Analysis]
42 Liu Y, Khan AR, Du X, Zhai Y, Tan H, Zhai G. Progress in the polymer-paclitaxel conjugate. Journal of Drug Delivery Science and Technology 2019;54:101237. [DOI: 10.1016/j.jddst.2019.101237] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Wei QY, He KM, Chen JL, Xu YM, Lau ATY. Phytofabrication of Nanoparticles as Novel Drugs for Anticancer Applications. Molecules 2019;24:E4246. [PMID: 31766544 DOI: 10.3390/molecules24234246] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
44 Wang X, Qiu L, Wang X, Ouyang H, Li T, Han L, Zhang X, Xu W, Chu K. Evaluation of intestinal permeation enhancement with carboxymethyl chitosan-rhein polymeric micelles for oral delivery of paclitaxel. Int J Pharm 2020;573:118840. [PMID: 31715358 DOI: 10.1016/j.ijpharm.2019.118840] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
45 Mu Y, Wu G, Su C, Dong Y, Zhang K, Li J, Sun X, Li Y, Chen X, Feng C. pH-sensitive amphiphilic chitosan-quercetin conjugate for intracellular delivery of doxorubicin enhancement. Carbohydrate Polymers 2019;223:115072. [DOI: 10.1016/j.carbpol.2019.115072] [Cited by in Crossref: 15] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
46 Zhang M, Asghar S, Jin X, Hu Z, Ping Q, Chen Z, Shao F, Xiao Y. The enhancing effect of N-acetylcysteine modified hyaluronic acid-octadecylamine micelles on the oral absorption of paclitaxel. International Journal of Biological Macromolecules 2019;138:636-47. [DOI: 10.1016/j.ijbiomac.2019.07.114] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
47 Peñalva R, Esparza I, Morales-Gracia J, González-Navarro CJ, Larrañeta E, Irache JM. Casein nanoparticles in combination with 2-hydroxypropyl-β-cyclodextrin improves the oral bioavailability of quercetin. Int J Pharm 2019;570:118652. [PMID: 31472219 DOI: 10.1016/j.ijpharm.2019.118652] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
48 Zhang L, McClements DJ, Wei Z, Wang G, Liu X, Liu F. Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability. Crit Rev Food Sci Nutr 2020;60:2083-97. [PMID: 31257900 DOI: 10.1080/10408398.2019.1630358] [Cited by in Crossref: 15] [Cited by in F6Publishing: 37] [Article Influence: 5.0] [Reference Citation Analysis]
49 Zhang E, Xing R, Liu S, Qin Y, Li K, Li P. Advances in chitosan-based nanoparticles for oncotherapy. Carbohydr Polym 2019;222:115004. [PMID: 31320066 DOI: 10.1016/j.carbpol.2019.115004] [Cited by in Crossref: 40] [Cited by in F6Publishing: 62] [Article Influence: 13.3] [Reference Citation Analysis]
50 Li T, Yang J, Liu R, Yi Y, Huang M, Wu Y, Tu H, Zhang L. Efficient fabrication of reversible pH-induced carboxymethyl chitosan nanoparticles for antitumor drug delivery under weakly acidic microenvironment. International Journal of Biological Macromolecules 2019;126:68-73. [DOI: 10.1016/j.ijbiomac.2018.12.178] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
51 Huang W, Li S, Li Z, Zhu W, Lu S, Jiang Y. Development of a resveratrol–zein–dopamine–lecithin delivery system with enhanced stability and mucus permeation. J Mater Sci 2019;54:8591-601. [DOI: 10.1007/s10853-019-03465-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
52 Peng N, Yang M, Tang Y, Zou T, Guo F, Wu K, Wang X, Li X, Liu Y. Amphiphilic hexadecyl-quaternized chitin micelles for doxorubicin delivery. Int J Biol Macromol 2019;130:615-21. [PMID: 30831169 DOI: 10.1016/j.ijbiomac.2019.02.170] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
53 Jabri T, Imran M, Aziz A, Rao K, Kawish M, Irfan M, Malik MI, Simjee SU, Arfan M, Shah MR. Design and synthesis of mixed micellar system for enhanced anticancer efficacy of Paclitaxel through its co-delivery with Naringin. Drug Dev Ind Pharm 2019;45:703-14. [PMID: 30557053 DOI: 10.1080/03639045.2018.1550091] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
54 Du B, Ding X, Wang H, Du Q, Xu T, Huang J, Zhou J, Cheng G. Development of an interactive tumor vascular suppression strategy to inhibit multidrug resistance and metastasis with pH/H 2 O 2 responsive and oxygen-producing nanohybrids. J Mater Chem B 2019;7:4784-93. [DOI: 10.1039/c9tb00546c] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
55 Xiong W, Zhao GD, Yin X, Linghu KG, Chu JM, Wong GT, Li H, Yu H, Wang YT. Brij-grafted-chitosan copolymers with function of P-glycoprotein modulation: Synthesis, characterization and in vitro investigations. Carbohydrate Polymers 2019;204:89-96. [DOI: 10.1016/j.carbpol.2018.10.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
56 Meng L, Gan S, Zhou Y, Cheng Y, Ding Y, Tong X, Wu J, Hu Y, Yuan A. Oxygen-rich chemotherapy via modified Abraxane to inhibit the growth and metastasis of triple-negative breast cancer. Biomater Sci 2019;7:168-77. [DOI: 10.1039/c8bm00753e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
57 Sun M, Li D, Wang X, He L, Lv X, Xu Y, Tang R. Intestine-penetrating, pH-sensitive and double-layered nanoparticles for oral delivery of doxorubicin with reduced toxicity. J Mater Chem B 2019;7:3692-703. [DOI: 10.1039/c9tb00212j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
58 Xing Y, Liu X, Li X, Ding F, Zhang J, Guo X. PEG-PCL modification and intestinal sustained-release of solid lipid nanoparticles for improving oral bioavailability of 2-methoxyestradiol. J Liposome Res 2019;29:207-14. [PMID: 30280943 DOI: 10.1080/08982104.2018.1529792] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
59 Shariatinia Z. Carboxymethyl chitosan: Properties and biomedical applications. International Journal of Biological Macromolecules 2018;120:1406-19. [DOI: 10.1016/j.ijbiomac.2018.09.131] [Cited by in Crossref: 134] [Cited by in F6Publishing: 194] [Article Influence: 33.5] [Reference Citation Analysis]
60 Tong Q, Sun H, Wang J, Wang Y, Peng Y, Jiang M, Pu D, Chen J. Preparation and characterization of Berberine Hydrochloride and Trimethoprim Chitosan/ SBE7-β-CD microspheres. Journal of Drug Delivery Science and Technology 2018;48:300-10. [DOI: 10.1016/j.jddst.2018.10.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
61 Le Z, Chen Y, Han H, Tian H, Zhao P, Yang C, He Z, Liu L, Leong KW, Mao HQ, Liu Z, Chen Y. Hydrogen-Bonded Tannic Acid-Based Anticancer Nanoparticle for Enhancement of Oral Chemotherapy. ACS Appl Mater Interfaces 2018;10:42186-97. [PMID: 30444601 DOI: 10.1021/acsami.8b18979] [Cited by in Crossref: 35] [Cited by in F6Publishing: 58] [Article Influence: 8.8] [Reference Citation Analysis]
62 Wang X, Guo Y, Qiu L, Wang X, Li T, Han L, Ouyang H, Xu W, Chu K. Preparation and evaluation of carboxymethyl chitosan-rhein polymeric micelles with synergistic antitumor effect for oral delivery of paclitaxel. Carbohydr Polym 2019;206:121-31. [PMID: 30553305 DOI: 10.1016/j.carbpol.2018.10.096] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
63 Ernest U, Chen HY, Xu MJ, Taghipour YD, Asad MHHB, Rahimi R, Murtaza G. Anti-Cancerous Potential of Polyphenol-Loaded Polymeric Nanotherapeutics. Molecules 2018;23:E2787. [PMID: 30373235 DOI: 10.3390/molecules23112787] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
64 Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opinion on Drug Delivery 2018;15:1127-42. [DOI: 10.1080/17425247.2018.1537261] [Cited by in Crossref: 13] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
65 Fang J, Zhang S, Xue X, Zhu X, Song S, Wang B, Jiang L, Qin M, Liang H, Gao L. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int J Nanomedicine 2018;13:5113-26. [PMID: 30233175 DOI: 10.2147/IJN.S170862] [Cited by in Crossref: 42] [Cited by in F6Publishing: 53] [Article Influence: 10.5] [Reference Citation Analysis]
66 Tian F, Dahmani FZ, Qiao J, Ni J, Xiong H, Liu T, Zhou J, Yao J. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer. Acta Biomater 2018;75:398-412. [PMID: 29874597 DOI: 10.1016/j.actbio.2018.05.050] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 9.5] [Reference Citation Analysis]
67 Liu J, Wang X, Yong H, Kan J, Jin C. Recent advances in flavonoid-grafted polysaccharides: Synthesis, structural characterization, bioactivities and potential applications. Int J Biol Macromol 2018;116:1011-25. [PMID: 29800657 DOI: 10.1016/j.ijbiomac.2018.05.149] [Cited by in Crossref: 39] [Cited by in F6Publishing: 52] [Article Influence: 9.8] [Reference Citation Analysis]
68 Iqbal S, Du X, Wang J, Li H, Yuan Y, Wang J. Surface charge tunable nanoparticles for TNF-α siRNA oral delivery for treating ulcerative colitis. Nano Res 2018;11:2872-84. [DOI: 10.1007/s12274-017-1918-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
69 Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for Cancer Therapy Based on Chemotherapy. Molecules 2018;23:E826. [PMID: 29617302 DOI: 10.3390/molecules23040826] [Cited by in Crossref: 88] [Cited by in F6Publishing: 110] [Article Influence: 22.0] [Reference Citation Analysis]
70 Du X, Khan AR, Fu M, Ji J, Yu A, Zhai G. Current development in the formulations of non-injection administration of paclitaxel. Int J Pharm 2018;542:242-52. [PMID: 29555439 DOI: 10.1016/j.ijpharm.2018.03.030] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
71 Cheng LC, Jiang Y, Xie Y, Qiu LL, Yang Q, Lu HY. Novel amphiphilic folic acid-cholesterol-chitosan micelles for paclitaxel delivery. Oncotarget 2017;8:3315-26. [PMID: 27926514 DOI: 10.18632/oncotarget.13757] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
72 Lu Z, Bu C, Hu W, Zhang H, Liu M, Lu M, Zhai G. Preparation and in vitro and in vivo evaluation of quercetin-loaded mixed micelles for oral delivery. Bioscience, Biotechnology, and Biochemistry 2018;82:238-46. [DOI: 10.1080/09168451.2017.1419852] [Cited by in Crossref: 8] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
73 Li S, Li Z, Pang J, Chen J, Wang H, Xie Q, Jiang Y. Polydopamine-Mediated Carrier with Stabilizing and Self-Antioxidative Properties for Polyphenol Delivery Systems. Ind Eng Chem Res 2018;57:590-9. [DOI: 10.1021/acs.iecr.7b04070] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
74 Wang Y, Zhao Y, Cui Y, Zhao Q, Zhang Q, Musetti S, Kinghorn KA, Wang S. Overcoming multiple gastrointestinal barriers by bilayer modified hollow mesoporous silica nanocarriers. Acta Biomater 2018;65:405-16. [PMID: 29037897 DOI: 10.1016/j.actbio.2017.10.025] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
75 Zhang Z, Xu S, Wang Y, Yu Y, Li F, Zhu H, Shen Y, Huang S, Guo S. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. Journal of Colloid and Interface Science 2018;509:47-57. [DOI: 10.1016/j.jcis.2017.08.097] [Cited by in Crossref: 39] [Cited by in F6Publishing: 44] [Article Influence: 9.8] [Reference Citation Analysis]
76 Yin T, Zhang Y, Liu Y, Chen Q, Fu Y, Liang J, Zhou J, Tang X, Liu J, Huo M. The efficiency and mechanism of N-octyl-O, N-carboxymethyl chitosan-based micelles to enhance the oral absorption of silybin. Int J Pharm 2018;536:231-40. [PMID: 29162374 DOI: 10.1016/j.ijpharm.2017.11.034] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
77 Liu K, Chen W, Yang T, Wen B, Ding D, Keidar M, Tang J, Zhang W. Paclitaxel and quercetin nanoparticles co-loaded in microspheres to prolong retention time for pulmonary drug delivery. Int J Nanomedicine 2017;12:8239-55. [PMID: 29180863 DOI: 10.2147/IJN.S147028] [Cited by in Crossref: 23] [Cited by in F6Publishing: 29] [Article Influence: 4.6] [Reference Citation Analysis]
78 Yu Y, Huo M, Fu Y, Xu W, Cai H, Yao L, Chen Q, Mu Y, Zhou J, Yin T. N-Deoxycholic acid-N,O-hydroxyethyl Chitosan with a Sulfhydryl Modification To Enhance the Oral Absorptive Efficiency of Paclitaxel. Mol Pharm 2017;14:4539-50. [PMID: 29058910 DOI: 10.1021/acs.molpharmaceut.7b00662] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
79 Wang Q, Li C, Ren T, Chen S, Ye X, Guo H, He H, Zhang Y, Yin T, Liang XJ, Tang X. Poly(vinyl methyl ether/maleic anhydride)-Doped PEG-PLA Nanoparticles for Oral Paclitaxel Delivery To Improve Bioadhesive Efficiency. Mol Pharm 2017;14:3598-608. [PMID: 28892400 DOI: 10.1021/acs.molpharmaceut.7b00612] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
80 Yin L, Wang Y, Wang C, Feng M. Nano-reservoir Bioadhesive Tablets Enhance Protein Drug Permeability Across the Small Intestine. AAPS PharmSciTech 2017;18:2329-35. [PMID: 28116599 DOI: 10.1208/s12249-016-0709-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
81 Guo X, Chen C, Liu X, Hou P, Guo X, Ding F, Wang Z, Hu Y, Li Z, Zhang Z. High oral bioavailability of 2-methoxyestradiol in PEG-PLGA micelles-microspheres for cancer therapy. European Journal of Pharmaceutics and Biopharmaceutics 2017;117:116-22. [DOI: 10.1016/j.ejpb.2017.04.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
82 Mouhid L, Corzo-Martínez M, Torres C, Vázquez L, Reglero G, Fornari T, Ramírez de Molina A. Improving In Vivo Efficacy of Bioactive Molecules: An Overview of Potentially Antitumor Phytochemicals and Currently Available Lipid-Based Delivery Systems. J Oncol 2017;2017:7351976. [PMID: 28555156 DOI: 10.1155/2017/7351976] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
83 Li X, Yan Y, Lin Y, Jiao J, Wang D, Di D, Zhang Y, Jiang T, Zhao Q, Wang S. Hollow mesoporous carbon as a near-infrared absorbing carrier compared with mesoporous carbon nanoparticles for chemo-photothermal therapy. Journal of Colloid and Interface Science 2017;494:159-69. [DOI: 10.1016/j.jcis.2017.01.090] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 4.6] [Reference Citation Analysis]
84 Pandey G, Mittapelly N, Valicherla GR, Shukla RP, Sharma S, Banala VT, Urandur S, Jajoriya AK, Mitra K, Mishra DP, Gayen JR, Mishra PR. P-gp modulatory acetyl-11-keto-β-boswellic acid based nanoemulsified carrier system for augmented oral chemotherapy of docetaxel. Colloids Surf B Biointerfaces 2017;155:276-86. [PMID: 28437753 DOI: 10.1016/j.colsurfb.2017.04.028] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
85 Soundararajan R, Sasaki K, Godfrey L, Odunze U, Fereira N, Schätzlein A, Uchegbu I. Direct in vivo evidence on the mechanism by which nanoparticles facilitate the absorption of a water insoluble, P-gp substrate. Int J Pharm 2016;514:121-32. [PMID: 27863655 DOI: 10.1016/j.ijpharm.2016.08.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
86 Vittorio O, Curcio M, Cojoc M, Goya GF, Hampel S, Iemma F, Dubrovska A, Cirillo G. Polyphenols delivery by polymeric materials: challenges in cancer treatment. Drug Deliv 2017;24:162-80. [PMID: 28156178 DOI: 10.1080/10717544.2016.1236846] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 6.2] [Reference Citation Analysis]
87 Guo Y, He W, Yang S, Zhao D, Li Z, Luan Y. Co-delivery of docetaxel and verapamil by reduction-sensitive PEG-PLGA-SS-DTX conjugate micelles to reverse the multi-drug resistance of breast cancer. Colloids and Surfaces B: Biointerfaces 2017;151:119-27. [DOI: 10.1016/j.colsurfb.2016.12.012] [Cited by in Crossref: 46] [Cited by in F6Publishing: 50] [Article Influence: 9.2] [Reference Citation Analysis]
88 Feng C, Li J, Mu Y, Kong M, Li Y, Raja MA, Cheng XJ, Liu Y, Chen XG. Multilayer micro-dispersing system as oral carriers for co-delivery of doxorubicin hydrochloride and P-gp inhibitor. International Journal of Biological Macromolecules 2017;94:170-80. [DOI: 10.1016/j.ijbiomac.2016.10.012] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
89 Xia G, Liu Y, Tian M, Gao P, Bao Z, Bai X, Yu X, Lang X, Hu S, Chen X. Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds. J Mater Chem B 2017;5:3172-85. [DOI: 10.1039/c7tb00479f] [Cited by in Crossref: 45] [Cited by in F6Publishing: 50] [Article Influence: 9.0] [Reference Citation Analysis]
90 Liu F, Ma C, Gao Y, Mcclements DJ. Food-Grade Covalent Complexes and Their Application as Nutraceutical Delivery Systems: A Review: Covalent complexes and their application…. COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY 2017;16:76-95. [DOI: 10.1111/1541-4337.12229] [Cited by in Crossref: 123] [Cited by in F6Publishing: 140] [Article Influence: 20.5] [Reference Citation Analysis]
91 Shi L, Lu J, Cao Y, Liu J, Zhang X, Zhang H, Cui J, Cao Q. Gastrointestinal stability, physicochemical characterization and oral bioavailability of chitosan or its derivative-modified solid lipid nanoparticles loading docetaxel. Drug Development and Industrial Pharmacy 2017;43:839-46. [DOI: 10.1080/03639045.2016.1220571] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 3.8] [Reference Citation Analysis]
92 Ni J, Tian F, Dahmani FZ, Yang H, Yue D, He S, Zhou J, Yao J. Curcumin-carboxymethyl chitosan (CNC) conjugate and CNC/LHR mixed polymeric micelles as new approaches to improve the oral absorption of P-gp substrate drugs. Drug Deliv 2016;23:3424-35. [PMID: 27198856 DOI: 10.1080/10717544.2016.1189625] [Cited by in Crossref: 18] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
93 Liu F, Antoniou J, Li Y, Majeed H, Liang R, Ma Y, Ma J, Zhong F. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for tea polyphenol encapsulation. Food Hydrocolloids 2016;57:291-300. [DOI: 10.1016/j.foodhyd.2016.01.024] [Cited by in Crossref: 47] [Cited by in F6Publishing: 52] [Article Influence: 7.8] [Reference Citation Analysis]
94 Nam JS, Sharma AR, Nguyen LT, Chakraborty C, Sharma G, Lee SS. Application of Bioactive Quercetin in Oncotherapy: From Nutrition to Nanomedicine. Molecules 2016;21:E108. [PMID: 26797598 DOI: 10.3390/molecules21010108] [Cited by in Crossref: 82] [Cited by in F6Publishing: 85] [Article Influence: 13.7] [Reference Citation Analysis]
95 Liu K, Jiang X, Hunziker P. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. Nanoscale 2016;8:16091-156. [DOI: 10.1039/c6nr04489a] [Cited by in Crossref: 93] [Cited by in F6Publishing: 101] [Article Influence: 15.5] [Reference Citation Analysis]
96 Xu C, Ding Y, Ni J, Yin L, Zhou J, Yao J. Tumor-targeted docetaxel-loaded hyaluronic acid-quercetin polymeric micelles with p-gp inhibitory property for hepatic cancer therapy. RSC Adv 2016;6:27542-56. [DOI: 10.1039/c6ra00460a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
97 Zhao L, Liu M, Wang J, Zhai G. Chondroitin sulfate-based nanocarriers for drug/gene delivery. Carbohydrate Polymers 2015;133:391-9. [DOI: 10.1016/j.carbpol.2015.07.063] [Cited by in Crossref: 62] [Cited by in F6Publishing: 68] [Article Influence: 8.9] [Reference Citation Analysis]
98 Ye Z, Guo J, Wu D, Tan M, Xiong X, Yin Y, He G. Photo-responsive shell cross-linked micelles based on carboxymethyl chitosan and their application in controlled release of pesticide. Carbohydrate Polymers 2015;132:520-8. [DOI: 10.1016/j.carbpol.2015.06.077] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 6.9] [Reference Citation Analysis]
99 Ge W, Guo Y, Zhong H, Wang X, Sun R. Synthesis, characterization, and micellar behaviors of hydroxyethyl cellulose-graft-poly(lactide/ε-caprolactone/p-dioxanone). Cellulose 2015;22:2365-74. [DOI: 10.1007/s10570-015-0663-6] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
100 Liu Y, Feng N. Nanocarriers for the delivery of active ingredients and fractions extracted from natural products used in traditional Chinese medicine (TCM). Adv Colloid Interface Sci 2015;221:60-76. [PMID: 25999266 DOI: 10.1016/j.cis.2015.04.006] [Cited by in Crossref: 70] [Cited by in F6Publishing: 61] [Article Influence: 10.0] [Reference Citation Analysis]
101 Wang J, Ma W, Tu P. Synergistically Improved Anti-tumor Efficacy by Co-delivery Doxorubicin and Curcumin Polymeric Micelles. Macromol Biosci 2015;15:1252-61. [PMID: 25981672 DOI: 10.1002/mabi.201500043] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 7.0] [Reference Citation Analysis]
102 Ge Y, Zhao Y, Li L. Preparation of sodium cholate-based micelles through non-covalent ıbonding interaction and application as oral delivery systems for paclitaxel. Drug Delivery 2016;23:2555-65. [DOI: 10.3109/10717544.2015.1028604] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
103 Abouelmagd SA, Sun B, Chang AC, Ku YJ, Yeo Y. Release kinetics study of poorly water-soluble drugs from nanoparticles: are we doing it right? Mol Pharm 2015;12:997-1003. [PMID: 25658769 DOI: 10.1021/mp500817h] [Cited by in Crossref: 99] [Cited by in F6Publishing: 121] [Article Influence: 14.1] [Reference Citation Analysis]
104 Ray Chowdhuri A, Tripathy S, Haldar C, Roy S, Sahu SK. Single step synthesis of carbon dot embedded chitosan nanoparticles for cell imaging and hydrophobic drug delivery. J Mater Chem B 2015;3:9122-31. [DOI: 10.1039/c5tb01831e] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 5.9] [Reference Citation Analysis]
105 Huang J, Shu Q, Wang L, Wu H, Wang AY, Mao H. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials 2015;39:105-13. [PMID: 25477177 DOI: 10.1016/j.biomaterials.2014.10.059] [Cited by in Crossref: 123] [Cited by in F6Publishing: 121] [Article Influence: 15.4] [Reference Citation Analysis]