BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lee SY, Kim S, Tyler JY, Park K, Cheng JX. Blood-stable, tumor-adaptable disulfide bonded mPEG-(Cys)4-PDLLA micelles for chemotherapy. Biomaterials 2013;34:552-61. [PMID: 23079665 DOI: 10.1016/j.biomaterials.2012.09.065] [Cited by in Crossref: 86] [Cited by in F6Publishing: 81] [Article Influence: 8.6] [Reference Citation Analysis]
Number Citing Articles
1 Raja ST, Thiruselvi T, Mandal AB, Gnanamani A. pH and redox sensitive albumin hydrogel: A self-derived biomaterial. Sci Rep 2015;5:15977. [PMID: 26527296 DOI: 10.1038/srep15977] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 6.3] [Reference Citation Analysis]
2 Zhuang W, Xu Y, Li G, Hu J, Ma B, Yu T, Su X, Wang Y. Redox and pH Dual-Responsive Polymeric Micelles with Aggregation-Induced Emission Feature for Cellular Imaging and Chemotherapy. ACS Appl Mater Interfaces 2018;10:18489-98. [DOI: 10.1021/acsami.8b02890] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 12.5] [Reference Citation Analysis]
3 Kim H, Kim E, Ha T, Lee SG, Lee SJ, Jeong SW. Highly stable and reduction responsive micelles from a novel polymeric surfactant with a repeating disulfide-based gemini structure for efficient drug delivery. Polymer 2017;133:102-9. [DOI: 10.1016/j.polymer.2017.11.032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
4 Wang J, Xue P, Zhou J, Li L, Xu L, Wang Y. Comparison of two kinds of docetaxel-vitamin E prodrugs: In vitro evaluation and in vivo antitumor activity. International Journal of Pharmaceutics 2016;505:352-60. [DOI: 10.1016/j.ijpharm.2016.03.057] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
5 Yang H, Wang Q, Huang S, Xiao A, Li F, Gan L, Yang X. Smart pH/Redox Dual-Responsive Nanogels for On-Demand Intracellular Anticancer Drug Release. ACS Appl Mater Interfaces 2016;8:7729-38. [PMID: 26960600 DOI: 10.1021/acsami.6b01602] [Cited by in Crossref: 84] [Cited by in F6Publishing: 75] [Article Influence: 14.0] [Reference Citation Analysis]
6 Cheng R, Meng F, Deng C, Zhong Z. Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today 2015;10:656-70. [DOI: 10.1016/j.nantod.2015.09.005] [Cited by in Crossref: 117] [Cited by in F6Publishing: 89] [Article Influence: 16.7] [Reference Citation Analysis]
7 Liu C, Yuan J, Luo X, Chen M, Chen Z, Zhao Y, Li X. Folate-decorated and reduction-sensitive micelles assembled from amphiphilic polymer-camptothecin conjugates for intracellular drug delivery. Mol Pharm 2014;11:4258-69. [PMID: 25238329 DOI: 10.1021/mp500468d] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 7.3] [Reference Citation Analysis]
8 Liu H, Li Y, Mozhi A, Zhang L, Liu Y, Xu X, Xing J, Liang X, Ma G, Yang J, Zhang X. SiRNA-phospholipid conjugates for gene and drug delivery in cancer treatment. Biomaterials 2014;35:6519-33. [PMID: 24797882 DOI: 10.1016/j.biomaterials.2014.04.033] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 5.6] [Reference Citation Analysis]
9 Huang L, Wang Y, Ling X, Chaurasiya B, Yang C, Du Y, Tu J, Xiong Y, Sun C. Efficient delivery of paclitaxel into ASGPR over-expressed cancer cells using reversibly stabilized multifunctional pullulan nanoparticles. Carbohydrate Polymers 2017;159:178-87. [DOI: 10.1016/j.carbpol.2016.11.094] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
10 Cui C, Yu P, Wu M, Zhang Y, Liu L, Wu B, Wang CX, Zhuo RX, Huang SW. Reduction-sensitive micelles with sheddable PEG shells self-assembled from a Y-shaped amphiphilic polymer for intracellular doxorubicine release. Colloids Surf B Biointerfaces 2015;129:137-45. [PMID: 25843367 DOI: 10.1016/j.colsurfb.2015.03.040] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
11 Hu H, Li Y, Zhou Q, Ao Y, Yu C, Wan Y, Xu H, Li Z, Yang X. Redox-Sensitive Hydroxyethyl Starch–Doxorubicin Conjugate for Tumor Targeted Drug Delivery. ACS Appl Mater Interfaces 2016;8:30833-44. [DOI: 10.1021/acsami.6b11932] [Cited by in Crossref: 60] [Cited by in F6Publishing: 55] [Article Influence: 10.0] [Reference Citation Analysis]
12 Li M, Tang Z, Lin J, Zhang Y, Lv S, Song W, Huang Y, Chen X. Synergistic Antitumor Effects of Doxorubicin-Loaded Carboxymethyl Cellulose Nanoparticle in Combination with Endostar for Effective Treatment of Non-Small-Cell Lung Cancer. Adv Healthcare Mater 2014;3:1877-88. [DOI: 10.1002/adhm.201400108] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
13 Fan W, Wang Y, Dai X, Shi L, Mckinley D, Tan C. Reduction-responsive Crosslinked Micellar Nanoassemblies for Tumor-targeted Drug Delivery. Pharm Res 2015;32:1325-40. [DOI: 10.1007/s11095-014-1537-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
14 Zhao J, Chai YD, Zhang J, Huang PF, Nakashima K, Gong YK. Long circulating micelles of an amphiphilic random copolymer bearing cell outer membrane phosphorylcholine zwitterions. Acta Biomater 2015;16:94-102. [PMID: 25637066 DOI: 10.1016/j.actbio.2015.01.019] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 7.3] [Reference Citation Analysis]
15 Gopinath V, Kamath SM, Priyadarshini S, Chik Z, Alarfaj AA, Hirad AH. Multifunctional applications of natural polysaccharide starch and cellulose: An update on recent advances. Biomed Pharmacother 2021;146:112492. [PMID: 34906768 DOI: 10.1016/j.biopha.2021.112492] [Reference Citation Analysis]
16 Lee SS, Li J, Tai JN, Ratliff TL, Park K, Cheng JX. Avasimibe encapsulated in human serum albumin blocks cholesterol esterification for selective cancer treatment. ACS Nano 2015;9:2420-32. [PMID: 25662106 DOI: 10.1021/nn504025a] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 5.6] [Reference Citation Analysis]
17 Zhao Y, Fletcher NL, Gemmell A, Houston ZH, Howard CB, Blakey I, Liu T, Thurecht KJ. Investigation of the Therapeutic Potential of a Synergistic Delivery System through Dual Controlled Release of Camptothecin–Doxorubicin. Adv Therap 2020;3:1900202. [DOI: 10.1002/adtp.201900202] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Sun H, Meng F, Cheng R, Deng C, Zhong Z. Reduction-responsive polymeric micelles and vesicles for triggered intracellular drug release. Antioxid Redox Signal 2014;21:755-67. [PMID: 24279980 DOI: 10.1089/ars.2013.5733] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 5.8] [Reference Citation Analysis]
19 Chen D, Gong F, Han X, Chi L, Sun J, Shen Y. Preparation and characterization of glutathione-responsive polymeric micelles functionalized with core cross-linked disulfide linkage for curcumin delivery. J Polym Res 2019;26. [DOI: 10.1007/s10965-019-1768-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
20 Viswanathan VK, Rajaram Manoharan SR, Subramanian S, Moon A. Nanotechnology in Spine Surgery: A Current Update and Critical Review of the Literature. World Neurosurgery 2019;123:142-55. [DOI: 10.1016/j.wneu.2018.11.035] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
21 Liu M, Khan AR, Ji J, Lin G, Zhao X, Zhai G. Crosslinked self-assembled nanoparticles for chemo-sonodynamic combination therapy favoring antitumor, antimetastasis management and immune responses. Journal of Controlled Release 2018;290:150-64. [DOI: 10.1016/j.jconrel.2018.10.007] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 13.0] [Reference Citation Analysis]
22 Lu J, Liu C, Wang P, Ghazwani M, Xu J, Huang Y, Ma X, Zhang P, Li S. The self-assembling camptothecin-tocopherol prodrug: An effective approach for formulating camptothecin. Biomaterials 2015;62:176-87. [PMID: 26057133 DOI: 10.1016/j.biomaterials.2015.05.046] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 5.7] [Reference Citation Analysis]
23 Gao Y, Bai S, Shi X, Hou M, Ma X, Zhang T, Xiao B, Xue P, Kang Y, Xu Z. Irinotecan delivery by unimolecular micelles composed of reduction-responsive star-like polymeric prodrug with high drug loading for enhanced cancer therapy. Colloids and Surfaces B: Biointerfaces 2018;170:488-96. [DOI: 10.1016/j.colsurfb.2018.06.054] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
24 Huang L, Hu J, Huang S, Wang B, Siaw-Debrah F, Nyanzu M, Zhang Y, Zhuge Q. Nanomaterial applications for neurological diseases and central nervous system injury. Prog Neurobiol 2017;157:29-48. [PMID: 28743465 DOI: 10.1016/j.pneurobio.2017.07.003] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 4.4] [Reference Citation Analysis]
25 Li J, Zhang B, Yue C, Wu J, Zhao L, Sun D, Wang R. Strategies to release doxorubicin from doxorubicin delivery vehicles. Journal of Drug Targeting 2018;26:9-26. [DOI: 10.1080/1061186x.2017.1363209] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
26 Zhang P, Wu J, Xiao F, Zhao D, Luan Y. Disulfide bond based polymeric drug carriers for cancer chemotherapy and relevant redox environments in mammals. Med Res Rev 2018;38:1485-510. [PMID: 29341223 DOI: 10.1002/med.21485] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
27 Jiang Y, Wang X, Liu X, Lv W, Zhang H, Zhang M, Li X, Xin H, Xu Q. Enhanced Antiglioma Efficacy of Ultrahigh Loading Capacity Paclitaxel Prodrug Conjugate Self-Assembled Targeted Nanoparticles. ACS Appl Mater Interfaces 2017;9:211-7. [PMID: 27976583 DOI: 10.1021/acsami.6b13805] [Cited by in Crossref: 39] [Cited by in F6Publishing: 45] [Article Influence: 6.5] [Reference Citation Analysis]
28 Lee JY, Kim JS, Cho HJ, Kim DD. Poly(styrene)-b-poly(DL-lactide) copolymer-based nanoparticles for anticancer drug delivery. Int J Nanomedicine 2014;9:2803-13. [PMID: 24940058 DOI: 10.2147/IJN.S62806] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
29 Han X, Gong F, Chi L, Feng C, Sun J, Chen Y, Liu J, Shen Y. Cancer-targeted and glutathione-responsive micellar carriers for controlled delivery of cabazitaxel. Nanotechnology 2019;30:055601. [PMID: 30511654 DOI: 10.1088/1361-6528/aaf020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
30 Zhong Y, Zhang J, Cheng R, Deng C, Meng F, Xie F, Zhong Z. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. Journal of Controlled Release 2015;205:144-54. [DOI: 10.1016/j.jconrel.2015.01.012] [Cited by in Crossref: 194] [Cited by in F6Publishing: 183] [Article Influence: 27.7] [Reference Citation Analysis]
31 Zhuang B, Du L, Xu H, Xu X, Wang C, Fan Y, Cong M, Yin J, Li H, Guan H. Self-assembled Micelle Loading Cabazitaxel for therapy of Lung Cancer. Int J Pharm 2016;499:146-55. [PMID: 26762884 DOI: 10.1016/j.ijpharm.2015.12.073] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
32 Sun H, Zhang Y, Zhong Z. Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Adv Drug Deliv Rev 2018;132:16-32. [PMID: 29775625 DOI: 10.1016/j.addr.2018.05.007] [Cited by in Crossref: 61] [Cited by in F6Publishing: 50] [Article Influence: 15.3] [Reference Citation Analysis]
33 Mcavan BS, Khuphe M, Thornton PD. Polymer hydrogels for glutathione-mediated protein release. European Polymer Journal 2017;87:468-77. [DOI: 10.1016/j.eurpolymj.2016.09.032] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 3.4] [Reference Citation Analysis]
34 Chen Y, Peng C, Lee P, Tsai M, Lin C, Shih Y, Wei M, Luo T, Shieh M. Traceable Self-Assembly of Laser-Triggered Cyanine-Based Micelle for Synergistic Therapeutic Effect. Adv Healthcare Mater 2015;4:892-902. [DOI: 10.1002/adhm.201400729] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
35 Liu P, Yue C, Sheng Z, Gao G, Li M, Yi H, Zheng C, Wang B, Cai L. Photosensitizer-conjugated redox-responsive dextran theranostic nanoparticles for near-infrared cancer imaging and photodynamic therapy. Polym Chem 2014;5:874-81. [DOI: 10.1039/c3py01173a] [Cited by in Crossref: 55] [Article Influence: 6.9] [Reference Citation Analysis]
36 Zhang X, Liu K, Huang Y, Xu J, Li J, Ma X, Li S. Reduction-sensitive dual functional nanomicelles for improved delivery of paclitaxel. Bioconjug Chem 2014;25:1689-96. [PMID: 25121577 DOI: 10.1021/bc500292j] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
37 Song S, Li M, Gong X, Han H, Zhou Y, Wang L, Shuang S, Dong C. Controlled Release of Curcumin via Folic Acid Conjugated Magnetic Drug Delivery System. Chem Res Chin Univ 2018;34:203-11. [DOI: 10.1007/s40242-018-7293-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
38 Chen T, He B, Tao J, He Y, Deng H, Wang X, Zheng Y. Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines. Adv Drug Deliv Rev 2019;143:177-205. [PMID: 31201837 DOI: 10.1016/j.addr.2019.04.009] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 14.0] [Reference Citation Analysis]
39 Sun H, Meng F, Cheng R, Deng C, Zhong Z. Reduction-sensitive degradable micellar nanoparticles as smart and intuitive delivery systems for cancer chemotherapy. Expert Opinion on Drug Delivery 2013;10:1109-22. [DOI: 10.1517/17425247.2013.783009] [Cited by in Crossref: 56] [Cited by in F6Publishing: 53] [Article Influence: 6.2] [Reference Citation Analysis]
40 Lee SY, Tyler JY, Kim S, Park K, Cheng JX. FRET imaging reveals different cellular entry routes of self-assembled and disulfide bonded polymeric micelles. Mol Pharm 2013;10:3497-506. [PMID: 23901940 DOI: 10.1021/mp4003333] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 4.6] [Reference Citation Analysis]
41 Wang S, Hu X, Wei W, Ma G. Transformable vesicles for cancer immunotherapy. Adv Drug Deliv Rev 2021;:113905. [PMID: 34331988 DOI: 10.1016/j.addr.2021.113905] [Reference Citation Analysis]
42 Yi M, Lu Q, Zhao Y, Cheng C, Zhang S. Synthesis and Self-Assembly of the pH-Responsive Anionic Copolymers for Enhanced Doxorubicin-Loading Capacity. Langmuir 2018;34:7877-86. [DOI: 10.1021/acs.langmuir.8b01237] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
43 Kim HC, Kim E, Lee SG, Lee SJ, Jeong SW, Lee YJ, Kwon MK, Choi SK, Hwang JS, Choi E. Reactive Oxygen Species-Responsive Miktoarm Amphiphile for Triggered Intracellular Release of Anti-Cancer Therapeutics. Polymers (Basel) 2021;13:4418. [PMID: 34960969 DOI: 10.3390/polym13244418] [Reference Citation Analysis]
44 Ozcelikkale A, Shin K, Noe-Kim V, Elzey BD, Dong Z, Zhang JT, Kim K, Kwon IC, Park K, Han B. Differential response to doxorubicin in breast cancer subtypes simulated by a microfluidic tumor model. J Control Release 2017;266:129-39. [PMID: 28939108 DOI: 10.1016/j.jconrel.2017.09.024] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
45 Luo X, Chen M, Zhang Y, Chen Z, Li X. Pharmacokinetics and antitumor efficacy of micelles assembled from multiarmed amphiphilic copolymers with drug conjugates in comparison with drug-encapsulated micelles. Eur J Pharm Biopharm 2016;98:9-19. [PMID: 26523356 DOI: 10.1016/j.ejpb.2015.10.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
46 Sun C, Lu J, Wang J, Hao P, Li C, Qi L, Yang L, He B, Zhong Z, Hao N. Redox-sensitive polymeric micelles with aggregation-induced emission for bioimaging and delivery of anticancer drugs. J Nanobiotechnology 2021;19:14. [PMID: 33413405 DOI: 10.1186/s12951-020-00761-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Tao J, Wei Z, Xu M, Xi L, Cheng Y, Lee SM, Ge W, Zheng Y. Particle Integrity and Size Effect on the Journey of Polymeric Nanocarriers in Zebrafish Model and the Correlation with Mice. Small 2021;17:e2103584. [PMID: 34528394 DOI: 10.1002/smll.202103584] [Reference Citation Analysis]
48 Tao J, Wei Z, He Y, Yan X, Ming-yuen Lee S, Wang X, Ge W, Zheng Y. Toward understanding the prolonged circulation and elimination mechanism of crosslinked polymeric micelles in zebrafish model. Biomaterials 2020;256:120180. [DOI: 10.1016/j.biomaterials.2020.120180] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
49 Zhang Y, Chen M, Luo X, Zhang H, Liu C, Li H, Li X. Tuning multiple arms for camptothecin and folate conjugations on star-shaped copolymers to enhance glutathione-mediated intracellular drug delivery. Polym Chem 2015;6:2192-203. [DOI: 10.1039/c4py01607f] [Cited by in Crossref: 19] [Article Influence: 2.7] [Reference Citation Analysis]
50 Zhu Y, Zhang J, Meng F, Deng C, Cheng R, Feijen J, Zhong Z. cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. Journal of Controlled Release 2016;233:29-38. [DOI: 10.1016/j.jconrel.2016.05.014] [Cited by in Crossref: 100] [Cited by in F6Publishing: 97] [Article Influence: 16.7] [Reference Citation Analysis]
51 Wang D, Lin B, Ai H. Theranostic nanoparticles for cancer and cardiovascular applications. Pharm Res 2014;31:1390-406. [PMID: 24595494 DOI: 10.1007/s11095-013-1277-z] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
52 Zhang Z, Wan J, Sun L, Li Y, Guo J, Wang C. Zinc finger-inspired nanohydrogels with glutathione/pH triggered degradation based on coordination substitution for highly efficient delivery of anti-cancer drugs. Journal of Controlled Release 2016;225:96-108. [DOI: 10.1016/j.jconrel.2016.01.035] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
53 Palanikumar L, Choi ES, Oh JY, Park SA, Choi H, Kim K, Kim C, Ryu JH. Importance of Encapsulation Stability of Nanocarriers with High Drug Loading Capacity for Increasing in Vivo Therapeutic Efficacy. Biomacromolecules 2018;19:3030-9. [PMID: 29883544 DOI: 10.1021/acs.biomac.8b00589] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
54 Brülisauer L, Gauthier MA, Leroux J. Disulfide-containing parenteral delivery systems and their redox-biological fate. Journal of Controlled Release 2014;195:147-54. [DOI: 10.1016/j.jconrel.2014.06.012] [Cited by in Crossref: 121] [Cited by in F6Publishing: 116] [Article Influence: 15.1] [Reference Citation Analysis]
55 Wakaskar RR, Bathena SP, Tallapaka SB, Ambardekar VV, Gautam N, Thakare R, Simet SM, Curran SM, Singh RK, Dong Y, Vetro JA. Peripherally cross-linking the shell of core-shell polymer micelles decreases premature release of physically loaded combretastatin A4 in whole blood and increases its mean residence time and subsequent potency against primary murine breast tumors after IV administration. Pharm Res 2015;32:1028-44. [PMID: 25223962 DOI: 10.1007/s11095-014-1515-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
56 Qin B, Liu L, Wu X, Liang F, Hou T, Pan Y, Song S. mPEGylated solanesol micelles as redox-responsive nanocarriers with synergistic anticancer effect. Acta Biomaterialia 2017;64:211-22. [DOI: 10.1016/j.actbio.2017.09.040] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
57 Guan S, Zhang Q, Bao J, Hu R, Czech T, Tang J. Recognition Sites for Cancer-targeting Drug Delivery Systems. Curr Drug Metab 2019;20:815-34. [PMID: 31580248 DOI: 10.2174/1389200220666191003161114] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
58 Wang J, Liu Y, Ma Y, Sun C, Tao W, Wang Y, Yang X, Wang J. NIR-Activated Supersensitive Drug Release Using Nanoparticles with a Flow Core. Adv Funct Mater 2016;26:7516-25. [DOI: 10.1002/adfm.201603195] [Cited by in Crossref: 54] [Cited by in F6Publishing: 40] [Article Influence: 9.0] [Reference Citation Analysis]
59 Bawa KK, Oh JK. Stimulus-Responsive Degradable Polylactide-Based Block Copolymer Nanoassemblies for Controlled/Enhanced Drug Delivery. Mol Pharmaceutics 2017;14:2460-74. [DOI: 10.1021/acs.molpharmaceut.7b00284] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 9.0] [Reference Citation Analysis]
60 Han X, Gong F, Sun J, Li Y, Liu X, Chen D, Liu J, Shen Y. Glutathione-responsive core cross-linked micelles for controlled cabazitaxel delivery. J Nanopart Res 2018;20. [DOI: 10.1007/s11051-018-4128-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
61 Ke X, Ng VWL, Ono RJ, Chan JM, Krishnamurthy S, Wang Y, Hedrick JL, Yang YY. Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. Journal of Controlled Release 2014;193:9-26. [DOI: 10.1016/j.jconrel.2014.06.061] [Cited by in Crossref: 75] [Cited by in F6Publishing: 69] [Article Influence: 9.4] [Reference Citation Analysis]
62 Li M, Tang Z, Lv S, Song W, Hong H, Jing X, Zhang Y, Chen X. Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. Biomaterials 2014;35:3851-64. [DOI: 10.1016/j.biomaterials.2014.01.018] [Cited by in Crossref: 195] [Cited by in F6Publishing: 189] [Article Influence: 24.4] [Reference Citation Analysis]
63 Lu Q, Ye F, Yang X, Gu Q, Wang P, Zhu J, Shen L, Gong F. Accelerated Recovery of Endothelium Function after Stent Implantation with the Use of a Novel Systemic Nanoparticle Curcumin. Biomed Res Int. 2015;2015:291871. [PMID: 26167481 DOI: 10.1155/2015/291871] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
64 Shi C, Zhang Z, Wang F, Ji X, Zhao Z, Luan Y. Docetaxel-loaded PEO–PPO–PCL/TPGS mixed micelles for overcoming multidrug resistance and enhancing antitumor efficacy. J Mater Chem B 2015;3:4259-71. [DOI: 10.1039/c5tb00401b] [Cited by in Crossref: 34] [Cited by in F6Publishing: 2] [Article Influence: 4.9] [Reference Citation Analysis]
65 Zhong Y, Wang C, Cheng R, Cheng L, Meng F, Liu Z, Zhong Z. cRGD-directed, NIR-responsive and robust AuNR/PEG-PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo. J Control Release 2014;195:63-71. [PMID: 25108151 DOI: 10.1016/j.jconrel.2014.07.054] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 6.5] [Reference Citation Analysis]
66 Tan C, Wang Y, Fan W. Exploring polymeric micelles for improved delivery of anticancer agents: recent developments in preclinical studies. Pharmaceutics 2013;5:201-19. [PMID: 24300405 DOI: 10.3390/pharmaceutics5010201] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
67 Liu P, Huang P, Kang ET. pH-Sensitive Dextran-Based Micelles from Copper-Free Click Reaction for Antitumor Drug Delivery. Langmuir 2021;37:12990-9. [PMID: 34714094 DOI: 10.1021/acs.langmuir.1c02049] [Reference Citation Analysis]
68 Liu H, Qiao C, Yang J, Weng J, Zhang X. Self-assembling doxorubicin-prodrug nanoparticles as siRNA drug delivery system for cancer treatment: in vitro and in vivo. J Mater Chem B 2014;2:5910-24. [DOI: 10.1039/c4tb00814f] [Cited by in Crossref: 19] [Article Influence: 2.4] [Reference Citation Analysis]
69 Armijo LM, Wawrzyniec SJ, Kopciuch M, Brandt YI, Rivera AC, Withers NJ, Cook NC, Huber DL, Monson TC, Smyth HDC, Osiński M. Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J Nanobiotechnology 2020;18:35. [PMID: 32070354 DOI: 10.1186/s12951-020-0588-6] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 12.5] [Reference Citation Analysis]
70 Fan H, Li Y, Yang J, Ye X. Effect of Hydrophobic Chain Length on the Stability and Guest Exchange Behavior of Shell-Sheddable Micelles Formed by Disulfide-Linked Diblock Copolymers. J Phys Chem B 2017;121:9708-17. [PMID: 28925709 DOI: 10.1021/acs.jpcb.7b06165] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
71 Lu W, Wang X, Cheng R, Deng C, Meng F, Zhong Z. Biocompatible and bioreducible micelles fabricated from novel α-amino acid-based poly(disulfide urethane)s: design, synthesis and triggered doxorubicin release. Polym Chem 2015;6:6001-10. [DOI: 10.1039/c5py00828j] [Cited by in Crossref: 20] [Article Influence: 2.9] [Reference Citation Analysis]
72 Tyler JY, Xu XM, Cheng JX. Nanomedicine for treating spinal cord injury. Nanoscale 2013;5:8821-36. [PMID: 23945984 DOI: 10.1039/c3nr00957b] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 4.6] [Reference Citation Analysis]
73 Wakaskar RR. General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. Journal of Drug Targeting 2018;26:311-8. [DOI: 10.1080/1061186x.2017.1367006] [Cited by in Crossref: 52] [Cited by in F6Publishing: 15] [Article Influence: 10.4] [Reference Citation Analysis]
74 Wang X, Mao W, Wang Z, Li X, Xiong Y, Lu H, Wang X, Yin H, Cao X, Xin H. Enhanced Anti-Brain Metastasis from Non-Small Cell Lung Cancer of Osimertinib and Doxorubicin Co-Delivery Targeted Nanocarrier. Int J Nanomedicine 2020;15:5491-501. [PMID: 32848385 DOI: 10.2147/IJN.S258699] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
75 Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HMN. Redox-responsive nano-carriers as tumor-targeted drug delivery systems. Eur J Med Chem 2018;157:705-15. [PMID: 30138802 DOI: 10.1016/j.ejmech.2018.08.034] [Cited by in Crossref: 59] [Cited by in F6Publishing: 47] [Article Influence: 14.8] [Reference Citation Analysis]
76 Qu Q, Wang Y, Zhang L, Zhang X, Zhou S. A Nanoplatform with Precise Control over Release of Cargo for Enhanced Cancer Therapy. Small 2016;12:1378-90. [PMID: 26763197 DOI: 10.1002/smll.201503292] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 8.7] [Reference Citation Analysis]
77 Yang H, Wang Q, Chen W, Zhao Y, Yong T, Gan L, Xu H, Yang X. Hydrophilicity/Hydrophobicity Reversable and Redox-Sensitive Nanogels for Anticancer Drug Delivery. Mol Pharmaceutics 2015;12:1636-47. [DOI: 10.1021/acs.molpharmaceut.5b00068] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
78 Zhang X, Huang Y, Zhao W, Liu H, Marquez R, Lu J, Zhang P, Zhang Y, Li J, Gao X, Venkataramanan R, Xu L, Li S. Targeted delivery of anticancer agents via a dual function nanocarrier with an interfacial drug-interactive motif. Biomacromolecules 2014;15:4326-35. [PMID: 25325795 DOI: 10.1021/bm501339j] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
79 Li D, Zhuang J, Yang Y, Wang D, Yang J, He H, Fan W, Banerjee A, Lu Y, Wu W, Gan L, Qi J. Loss of integrity of doxorubicin liposomes during transcellular transportation evidenced by fluorescence resonance energy transfer effect. Colloids Surf B Biointerfaces 2018;171:224-32. [PMID: 30036789 DOI: 10.1016/j.colsurfb.2018.07.022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
80 Cao Y, Zhao J, Zhang Y, Liu J, Liu J, Dong A, Deng L. pH/redox dual-sensitive nanoparticles based on the PCL/PEG triblock copolymer for enhanced intracellular doxorubicin release. RSC Adv 2015;5:28060-9. [DOI: 10.1039/c5ra01833a] [Cited by in Crossref: 16] [Article Influence: 2.3] [Reference Citation Analysis]
81 Shin CS, Kwak B, Han B, Park K. Development of an in vitro 3D tumor model to study therapeutic efficiency of an anticancer drug. Mol Pharm 2013;10:2167-75. [PMID: 23461341 DOI: 10.1021/mp300595a] [Cited by in Crossref: 90] [Cited by in F6Publishing: 87] [Article Influence: 10.0] [Reference Citation Analysis]
82 Lin W, Ma G, Kampf N, Yuan Z, Chen S. Development of Long-Circulating Zwitterionic Cross-Linked Micelles for Active-Targeted Drug Delivery. Biomacromolecules 2016;17:2010-8. [PMID: 27050797 DOI: 10.1021/acs.biomac.6b00168] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
83 Gao L, Wang H, Nan L, Peng T, Sun L, Zhou J, Xiao Y, Wang J, Sun J, Lu W, Zhang L, Yan Z, Yu L, Wang Y. Erythrocyte Membrane-Wrapped pH Sensitive Polymeric Nanoparticles for Non-Small Cell Lung Cancer Therapy. Bioconjug Chem 2017;28:2591-8. [PMID: 28872851 DOI: 10.1021/acs.bioconjchem.7b00428] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]