BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sun Y, Zheng Y, Ran H, Zhou Y, Shen H, Chen Y, Chen H, Krupka TM, Li A, Li P, Wang Z, Wang Z. Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation. Biomaterials 2012;33:5854-64. [DOI: 10.1016/j.biomaterials.2012.04.062] [Cited by in Crossref: 153] [Cited by in F6Publishing: 170] [Article Influence: 15.3] [Reference Citation Analysis]
Number Citing Articles
1 Alvi M, Yaqoob A, Rehman K, Shoaib SM, Akash MSH. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives. AAPS Open 2022;8. [DOI: 10.1186/s41120-022-00060-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Huang J, Wang H, Huang L, Zhou Y. Phospholipid-mimicking block, graft, and block-graft copolymers for phase-transition microbubbles as ultrasound contrast agents. Front Pharmacol 2022;13:968835. [DOI: 10.3389/fphar.2022.968835] [Reference Citation Analysis]
3 Jayan JS, Rajan R, Appukuttan S, Joseph K. Multifunctional Nanomaterials for Medical Applications. Nanomaterials and Nanotechnology in Medicine 2022. [DOI: 10.1002/9781119558026.ch18] [Reference Citation Analysis]
4 Abdurahim J, Serra CA, Blanck C, Vauthier M. One-step production of highly monodisperse size-controlled poly(lactic-co-glycolic acid) nanoparticles for the release of a hydrophobic model drug. Journal of Drug Delivery Science and Technology 2022;71:103358. [DOI: 10.1016/j.jddst.2022.103358] [Reference Citation Analysis]
5 Kwizera EA, Stewart S, Mahmud MM, He X. Magnetic Nanoparticle-Mediated Heating for Biomedical Applications. Journal of Heat Transfer 2022;144. [DOI: 10.1115/1.4053007] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Rocha CV, Gonçalves V, da Silva MC, Bañobre-López M, Gallo J. PLGA-Based Composites for Various Biomedical Applications. Int J Mol Sci 2022;23:2034. [PMID: 35216149 DOI: 10.3390/ijms23042034] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
7 Leal BH, Velasco B, Cambón A, Pardo A, Fernandez-vega J, Arellano L, Al-modlej A, Mosquera VX, Bouzas A, Prieto G, Barbosa S, Taboada P. Combined Therapeutics for Atherosclerosis Treatment Using Polymeric Nanovectors. Pharmaceutics 2022;14:258. [DOI: 10.3390/pharmaceutics14020258] [Reference Citation Analysis]
8 Banerjee RK, Chandran NT, Paruchuri SS, Myers MR. HIGH-INTENSITY FOCUSED ULTRASOUND (HIFU) ENERGIZED NANOPARTICLES-MEDIATED ENHANCED THERMAL ABLATION OF TUMORS: REVIEW OF RECENT PROGRESS AND A PROPOSED METHODOLOGY FOR DISTINGUISHING HEAT SOURCES. Annual Rev Heat Transfer 2022;24:435-461. [DOI: 10.1615/annualrevheattransfer.2022042051] [Reference Citation Analysis]
9 Zhang yajing, Wang minghao, Lei zhaokang, Mo runyang, 马嫣嫱, 莫润阳; Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119. . Acta Phys Sin 2022;0:0. [DOI: 10.7498/aps.71.20220847] [Reference Citation Analysis]
10 Subhan MA. Advances with metal oxide-based nanoparticles as MDR metastatic breast cancer therapeutics and diagnostics. RSC Adv 2022;12:32956-32978. [DOI: 10.1039/d2ra02005j] [Reference Citation Analysis]
11 Baghban R, Afarid M, Soleymani J, Rahimi M. Were magnetic materials useful in cancer therapy? Biomed Pharmacother 2021;144:112321. [PMID: 34656061 DOI: 10.1016/j.biopha.2021.112321] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
12 Wang D, Jiang F, Wang L, Tang Y, Zhang Z, Du Y, Zou J. Polyethylenimine (PEI)-modified poly (lactic-co-glycolic) acid (PLGA) nanoparticles conjugated with tumor-homing bacteria facilitate high intensity focused ultrasound-mediated tumor ablation. Biochem Biophys Res Commun 2021;571:104-9. [PMID: 34314995 DOI: 10.1016/j.bbrc.2021.07.061] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Ye H, Huang N, Sun T, Hou W, Bai J, Li H. [Preparation of doxorubicin-loaded metallic organic nanoparticles and their effect for enhancing efficacy of high-intensity focused ultrasound therapy in tumor-bearing mice]. Nan Fang Yi Ke Da Xue Xue Bao 2021;41:640-8. [PMID: 34134949 DOI: 10.12122/j.issn.1673-4254.2021.05.02] [Reference Citation Analysis]
14 Zhang Y, Guo L, Kong F, Duan L, Li H, Fang C, Zhang K. Nanobiotechnology-enabled energy utilization elevation for augmenting minimally-invasive and noninvasive oncology thermal ablation. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1733. [PMID: 34137183 DOI: 10.1002/wnan.1733] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
15 Saengruengrit C, Rodponthukwaji K, Sucharitakul J, Tummamunkong P, Palaga T, Ritprajak P, Insin N. Effective gene delivery into primary dendritic cells using synthesized PDMAEMA-iron oxide nanocubes. Materials Today Chemistry 2021;20:100481. [DOI: 10.1016/j.mtchem.2021.100481] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Tsirkin S, Goldbart R, Traitel T, Kost J. Tailor-Made Single-Core PLGA Microbubbles as Acoustic Cavitation Enhancers for Therapeutic Applications. ACS Appl Mater Interfaces 2021;13:25748-58. [PMID: 34048218 DOI: 10.1021/acsami.1c04770] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
17 Tripathy A, Nine MJ, Silva FS. Biosensing platform on ferrite magnetic nanoparticles: Synthesis, functionalization, mechanism and applications. Adv Colloid Interface Sci 2021;290:102380. [PMID: 33819727 DOI: 10.1016/j.cis.2021.102380] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
18 Song F, Gao H, Li D, Petrov AV, Petrov VV, Wen D, Sukhorukov GB. Low intensity focused ultrasound responsive microcapsules for non-ablative ultrafast intracellular release of small molecules. J Mater Chem B 2021;9:2384-93. [PMID: 33554993 DOI: 10.1039/d0tb02788j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
19 Jin Z, Chang J, Dou P, Jin S, Jiao M, Tang H, Jiang W, Ren W, Zheng S. Tumor Targeted Multifunctional Magnetic Nanobubbles for MR/US Dual Imaging and Focused Ultrasound Triggered Drug Delivery. Front Bioeng Biotechnol 2020;8:586874. [PMID: 33365305 DOI: 10.3389/fbioe.2020.586874] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
20 Li L, Guan Y, Xiong H, Deng T, Ji Q, Xu Z, Kang Y, Pang J. Fundamentals and applications of nanoparticles for ultrasound‐based imaging and therapy. Nano Select 2020;1:263-84. [DOI: 10.1002/nano.202000035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
21 Wang F, Wang Z, Pang L, Wan S, Qiu L. Preparation and in vitro study of stromal cell-derived factor 1-targeted Fe3O4/poly(lactic-co-glycolic acid)/perfluorohexane nanoparticles. Exp Ther Med 2020;20:2003-12. [PMID: 32782510 DOI: 10.3892/etm.2020.8925] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Shen X, Li T, Xie X, Feng Y, Chen Z, Yang H, Wu C, Deng S, Liu Y. PLGA-Based Drug Delivery Systems for Remotely Triggered Cancer Therapeutic and Diagnostic Applications. Front Bioeng Biotechnol 2020;8:381. [PMID: 32432092 DOI: 10.3389/fbioe.2020.00381] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 17.5] [Reference Citation Analysis]
23 Sadeghi-Goughari M, Jeon S, Kwon HJ. Magnetic nanoparticles-enhanced focused ultrasound heating: size effect, mechanism, and performance analysis. Nanotechnology 2020;31:245101. [PMID: 32135521 DOI: 10.1088/1361-6528/ab7cea] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
24 Zhao X, Wang X, Wang J, Yuan J, Zhang J, Zhu X, Lei C, Yang Q, Wang B, Cao F, Liu L. A Peptide-Functionalized Magnetic Nanoplatform-Loaded Melatonin for Targeted Amelioration of Fibrosis in Pressure Overload-Induced Cardiac Hypertrophy. Int J Nanomedicine 2020;15:1321-33. [PMID: 32161461 DOI: 10.2147/IJN.S235518] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Sun Z, Huang G, Ma Z. Synthesis of theranostic Anti-EGFR ligand conjugate iron oxide nanoparticles for magnetic resonance imaging for treatment of liver cancer. Journal of Drug Delivery Science and Technology 2020;55:101367. [DOI: 10.1016/j.jddst.2019.101367] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
26 Shahbazi MA, Faghfouri L, Ferreira MPA, Figueiredo P, Maleki H, Sefat F, Hirvonen J, Santos HA. The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem Soc Rev 2020;49:1253-321. [PMID: 31998912 DOI: 10.1039/c9cs00283a] [Cited by in Crossref: 152] [Cited by in F6Publishing: 160] [Article Influence: 76.0] [Reference Citation Analysis]
27 Wang M, Yang Q, Li M, Zou H, Wang Z, Ran H, Zheng Y, Jian J, Zhou Y, Luo Y, Ran Y, Jiang S, Zhou X. Multifunctional Nanoparticles for Multimodal Imaging-Guided Low-Intensity Focused Ultrasound/Immunosynergistic Retinoblastoma Therapy. ACS Appl Mater Interfaces 2020;12:5642-57. [PMID: 31940169 DOI: 10.1021/acsami.9b22072] [Cited by in Crossref: 26] [Cited by in F6Publishing: 31] [Article Influence: 13.0] [Reference Citation Analysis]
28 Shakil MS, Hasan MA, Sarker SR. Iron Oxide Nanoparticles for Breast Cancer Theranostics. Curr Drug Metab 2019;20:446-56. [PMID: 30465497 DOI: 10.2174/1389200220666181122105043] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
29 Bai S, Liao J, Zhang B, Zhao M, You B, Li P, Ran H, Wang Z, Shi R, Zhang G. Multimodal and multifunctional nanoparticles with platelet targeting ability and phase transition efficiency for the molecular imaging and thrombolysis of coronary microthrombi. Biomater Sci 2020;8:5047-60. [DOI: 10.1039/d0bm00818d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
30 Wang L, Lu H, Gao Q, Yuan C, Ding F, Li J, Zhang D, Ou X. A multifunctional theranostic contrast agent for ultrasound/near infrared fluorescence imaging-based tumor diagnosis and ultrasound-triggered combined photothermal and gene therapy. Acta Biomater 2019;99:373-86. [PMID: 31525534 DOI: 10.1016/j.actbio.2019.09.015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
31 Allen SP, Steeves T, Fergusson A, Moore D, Davis RM, Vlaisialjevich E, Meyer CH. Novel acoustic coupling bath using magnetite nanoparticles for MR-guided transcranial focused ultrasound surgery. Med Phys 2019;46:5444-53. [PMID: 31605643 DOI: 10.1002/mp.13863] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
32 Devarakonda SB, Myers MR, Banerjee RK. Comparison of Heat Transfer Enhancement Between Magnetic and Gold Nanoparticles During HIFU Sonication. J Biomech Eng 2018;140. [PMID: 30003252 DOI: 10.1115/1.4040120] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
33 Pillarisetti S, Uthaman S, Huh KM, Koh YS, Lee S, Park IK. Multimodal Composite Iron Oxide Nanoparticles for Biomedical Applications. Tissue Eng Regen Med 2019;16:451-65. [PMID: 31624701 DOI: 10.1007/s13770-019-00218-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
34 Liu Y, He A, Xu C, La N, Yan Z, Ji X. A Strategy for a Six-Way Synthetic Large Power HIFU Therapy System. 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) 2019. [DOI: 10.1109/cisp-bmei48845.2019.8965789] [Reference Citation Analysis]
35 Choi H, Choi W, Kim J, Kong WH, Kim KS, Kim C, Hahn SK. Multifunctional Nanodroplets Encapsulating Naphthalocyanine and Perfluorohexane for Bimodal Image-Guided Therapy. Biomacromolecules 2019;20:3767-77. [PMID: 31483619 DOI: 10.1021/acs.biomac.9b00842] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
36 Li Y, Hao L, Liu F, Yin L, Yan S, Zhao H, Ding X, Guo Y, Cao Y, Li P, Wang Z, Ran H, Sun Y. Cell penetrating peptide-modified nanoparticles for tumor targeted imaging and synergistic effect of sonodynamic/HIFU therapy. Int J Nanomedicine 2019;14:5875-94. [PMID: 31534329 DOI: 10.2147/IJN.S212184] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
37 Ali N, Zaman H, Bilal M, Shah AA, Nazir MS, Iqbal HM. Environmental perspectives of interfacially active and magnetically recoverable composite materials – A review. Science of The Total Environment 2019;670:523-38. [DOI: 10.1016/j.scitotenv.2019.03.209] [Cited by in Crossref: 60] [Cited by in F6Publishing: 60] [Article Influence: 20.0] [Reference Citation Analysis]
38 Yildirim A, Blum NT, Goodwin AP. Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics 2019;9:2572-94. [PMID: 31131054 DOI: 10.7150/thno.32424] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
39 Xu J, Cheng X, Tan L, Fu C, Ahmed M, Tian J, Dou J, Zhou Q, Ren X, Wu Q, Tang S, Zhou H, Meng X, Yu J, Liang P. Microwave Responsive Nanoplatform via P-Selectin Mediated Drug Delivery for Treatment of Hepatocellular Carcinoma with Distant Metastasis. Nano Lett 2019;19:2914-27. [DOI: 10.1021/acs.nanolett.8b05202] [Cited by in Crossref: 40] [Cited by in F6Publishing: 45] [Article Influence: 13.3] [Reference Citation Analysis]
40 Kaczmarek K, Hornowski T, Antal I, Timko M, Józefczak A. Magneto-ultrasonic heating with nanoparticles. Journal of Magnetism and Magnetic Materials 2019;474:400-5. [DOI: 10.1016/j.jmmm.2018.11.062] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
41 He K, Ran H, Su Z, Wang Z, Li M, Hao L. Perfluorohexane-encapsulated fullerene nanospheres for dual-modality US/CT imaging and synergistic high-intensity focused ultrasound ablation. Int J Nanomedicine 2019;14:519-29. [PMID: 30666111 DOI: 10.2147/IJN.S184579] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
42 Stavarache C, Vinatoru M, Mason T. The Effect of Focused Ultrasound on Magnetic Polyelectrolyte Capsules Loaded with Dye When Suspended in Tissue-Mimicking Gel. Curr Drug Deliv 2019;16:355-63. [PMID: 30605057 DOI: 10.2174/1567201816666190103121313] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
43 Dhavalikar R, Bohórquez AC, Rinaldi C. Image-Guided Thermal Therapy Using Magnetic Particle Imaging and Magnetic Fluid Hyperthermia. Nanomaterials for Magnetic and Optical Hyperthermia Applications. Elsevier; 2019. pp. 265-86. [DOI: 10.1016/b978-0-12-813928-8.00010-7] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
44 Yu L, Hu P, Chen Y. Gas-Generating Nanoplatforms: Material Chemistry, Multifunctionality, and Gas Therapy. Adv Mater 2018;30:e1801964. [PMID: 30066474 DOI: 10.1002/adma.201801964] [Cited by in Crossref: 143] [Cited by in F6Publishing: 151] [Article Influence: 35.8] [Reference Citation Analysis]
45 Huang J, Liu F, Han X, Zhang L, Hu Z, Jiang Q, Wang Z, Ran H, Wang D, Li P. Nanosonosensitizers for Highly Efficient Sonodynamic Cancer Theranostics. Theranostics 2018;8:6178-94. [DOI: 10.7150/thno.29569] [Cited by in Crossref: 64] [Cited by in F6Publishing: 71] [Article Influence: 16.0] [Reference Citation Analysis]
46 Browning R, Stride E. Microbubble-Mediated Delivery for Cancer Therapy. Fluids 2018;3:74. [DOI: 10.3390/fluids3040074] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
47 Choipang C, Chuysinuan P, Suwantong O, Ekabutr P, Supaphol P. Hydrogel wound dressings loaded with PLGA/ciprofloxacin hydrochloride nanoparticles for use on pressure ulcers. Journal of Drug Delivery Science and Technology 2018;47:106-14. [DOI: 10.1016/j.jddst.2018.06.025] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
48 Karpuz M, Silindir-Gunay M, Ozer AY. Current and Future Approaches for Effective Cancer Imaging and Treatment. Cancer Biother Radiopharm 2018;33:39-51. [PMID: 29634415 DOI: 10.1089/cbr.2017.2378] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
49 Yu L, Lin H, Lu X, Chen Y. Multifunctional Mesoporous Silica Nanoprobes: Material Chemistry–Based Fabrication and Bio‐Imaging Functionality. Adv Therap 2018;1:1800078. [DOI: 10.1002/adtp.201800078] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
50 Peña Icart L, Fernandes dos Santos E, Agüero Luztonó L, Zaldívar Silva D, Andrade L, Lopes Dias M, Trambaioli da Rocha e Lima LM, Gomes de Souza F. Paclitaxel-Loaded PLA/PEG/Magnetite Anticancer and Hyperthermic Agent Prepared From Materials Obtained by the Ugi's Multicomponent Reaction. Macromol Symp 2018;380:1800094. [DOI: 10.1002/masy.201800094] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
51 Li M, Luo H, Zhang W, He K, Chen Y, Liu J, Chen J, Wang D, Hao L, Ran H, Zheng Y, Wang Z, Li P. Phase-shift, targeted nanoparticles for ultrasound molecular imaging by low intensity focused ultrasound irradiation. Int J Nanomedicine 2018;13:3907-20. [PMID: 30013344 DOI: 10.2147/IJN.S166200] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
52 Saengruengrit C, Ritprajak P, Wanichwecharungruang S, Sharma A, Salvan G, Zahn DR, Insin N. The combined magnetic field and iron oxide-PLGA composite particles: Effective protein antigen delivery and immune stimulation in dendritic cells. Journal of Colloid and Interface Science 2018;520:101-11. [DOI: 10.1016/j.jcis.2018.03.008] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
53 Xie W, Guo Z, Gao F, Gao Q, Wang D, Liaw BS, Cai Q, Sun X, Wang X, Zhao L. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 2018;8:3284-307. [PMID: 29930730 DOI: 10.7150/thno.25220] [Cited by in Crossref: 173] [Cited by in F6Publishing: 184] [Article Influence: 43.3] [Reference Citation Analysis]
54 Tang H, Guo Y, Peng L, Fang H, Wang Z, Zheng Y, Ran H, Chen Y. In Vivo Targeted, Responsive, and Synergistic Cancer Nanotheranostics by Magnetic Resonance Imaging-Guided Synergistic High-Intensity Focused Ultrasound Ablation and Chemotherapy. ACS Appl Mater Interfaces 2018;10:15428-41. [PMID: 29652130 DOI: 10.1021/acsami.8b01967] [Cited by in Crossref: 50] [Cited by in F6Publishing: 61] [Article Influence: 12.5] [Reference Citation Analysis]
55 Song R, Peng C, Xu X, Wang J, Yu M, Hou Y, Zou R, Yao S. Controllable Formation of Monodisperse Polymer Microbubbles as Ultrasound Contrast Agents. ACS Appl Mater Interfaces 2018;10:14312-20. [PMID: 29637761 DOI: 10.1021/acsami.7b17258] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 7.3] [Reference Citation Analysis]
56 Kaczmarek K, Hornowski T, Kubovčíková M, Timko M, Koralewski M, Józefczak A. Heating Induced by Therapeutic Ultrasound in the Presence of Magnetic Nanoparticles. ACS Appl Mater Interfaces 2018;10:11554-64. [PMID: 29560717 DOI: 10.1021/acsami.8b02496] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
57 Zhao X, Luo W, Hu J, Zuo L, Wang J, Hu R, Wang B, Xu L, Li J, Wu M, Li P, Liu L. Cardiomyocyte-targeted and 17β-estradiol-loaded acoustic nanoprobes as a theranostic platform for cardiac hypertrophy. J Nanobiotechnology 2018;16:36. [PMID: 29602311 DOI: 10.1186/s12951-018-0360-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
58 Hosseini nasr A, Akbarzadeh H, Tayebee R. Adsorption mechanism of different acyclovir concentrations on 1–2 nm sized magnetite nanoparticles: A molecular dynamics study. Journal of Molecular Liquids 2018;254:64-9. [DOI: 10.1016/j.molliq.2018.01.081] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
59 Perlman O, Weitz IS, Sivan SS, Abu-Khalla H, Benguigui M, Shaked Y, Azhari H. Copper oxide loaded PLGA nanospheres: towards a multifunctional nanoscale platform for ultrasound-based imaging and therapy. Nanotechnology 2018;29:185102. [PMID: 29451124 DOI: 10.1088/1361-6528/aab00c] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
60 Núñez C, Estévez SV, del Pilar Chantada M. Inorganic nanoparticles in diagnosis and treatment of breast cancer. J Biol Inorg Chem 2018;23:331-45. [DOI: 10.1007/s00775-018-1542-z] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 10.8] [Reference Citation Analysis]
61 Bera C, Devarakonda SB, Kumar V, Ganguli AK, Banerjee RK. The mechanism of nanoparticle-mediated enhanced energy transfer during high-intensity focused ultrasound sonication. Phys Chem Chem Phys 2017;19:19075-82. [PMID: 28702635 DOI: 10.1039/c7cp03542j] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
62 Naidek N, Zarbin AJG, Orth ES. Covalently linked nanocomposites of polypyrrole with graphene: Strategic design toward optimized properties. J Polym Sci Part A: Polym Chem 2018;56:579-88. [DOI: 10.1002/pola.28944] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
63 Hu Y, Mignani S, Majoral J, Shen M, Shi X. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem Soc Rev 2018;47:1874-900. [DOI: 10.1039/c7cs00657h] [Cited by in Crossref: 217] [Cited by in F6Publishing: 229] [Article Influence: 54.3] [Reference Citation Analysis]
64 Avitabile E, Bedognetti D, Ciofani G, Bianco A, Delogu LG. How can nanotechnology help the fight against breast cancer? Nanoscale 2018;10:11719-31. [DOI: 10.1039/c8nr02796j] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 7.8] [Reference Citation Analysis]
65 Liu J, Xu F, Huang J, Xu J, Liu Y, Yao Y, Ao M, Li A, Hao L, Cao Y, Hu Z, Ran H, Wang Z, Li P. Low-intensity focused ultrasound (LIFU)-activated nanodroplets as a theranostic agent for noninvasive cancer molecular imaging and drug delivery. Biomater Sci 2018;6:2838-49. [DOI: 10.1039/c8bm00726h] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 9.0] [Reference Citation Analysis]
66 Shang T, Liu J, Chen Y, Hu Z, Deng L, Ran H, Li P, Zheng Y, Wang D, Wang Z, Sun Y. In Vivo Targeted Cancer Theranostics by Core/Shell-Structured Multifunctional Prussian Blue/PLGA “Nanococktails”. Part Part Syst Charact 2018;35:1700306. [DOI: 10.1002/ppsc.201700306] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
67 Calderó G, Fornaguera C, Zadoina L, Dols-Perez A, Solans C. Design of parenteral MNP-loaded PLGA nanoparticles by a low-energy emulsification approach as theragnostic platforms for intravenous or intratumoral administration. Colloids Surf B Biointerfaces 2017;160:535-42. [PMID: 29024918 DOI: 10.1016/j.colsurfb.2017.09.060] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
68 Xu J, Zhou J, Zhong Y, Zhang Y, Liu J, Chen Y, Deng L, Sheng D, Wang Z, Ran H, Guo D. Phase Transition Nanoparticles as Multimodality Contrast Agents for the Detection of Thrombi and for Targeting Thrombolysis: in Vitro and in Vivo Experiments. ACS Appl Mater Interfaces 2017;9:42525-35. [PMID: 29160060 DOI: 10.1021/acsami.7b12689] [Cited by in Crossref: 30] [Cited by in F6Publishing: 35] [Article Influence: 6.0] [Reference Citation Analysis]
69 Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev 2017;117:13566-638. [DOI: 10.1021/acs.chemrev.7b00258] [Cited by in Crossref: 993] [Cited by in F6Publishing: 1059] [Article Influence: 198.6] [Reference Citation Analysis]
70 Fornaguera C, García-Celma MJ. Personalized Nanomedicine: A Revolution at the Nanoscale. J Pers Med 2017;7:E12. [PMID: 29023366 DOI: 10.3390/jpm7040012] [Cited by in Crossref: 79] [Cited by in F6Publishing: 87] [Article Influence: 15.8] [Reference Citation Analysis]
71 Zhang N, Wang R, Hao J, Yang Y, Zou H, Wang Z. Mesoporous composite nanoparticles for dual-modality ultrasound/magnetic resonance imaging and synergistic chemo-/thermotherapy against deep tumors. Int J Nanomedicine 2017;12:7273-89. [PMID: 29042775 DOI: 10.2147/IJN.S144058] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
72 Qian X, Han X, Chen Y. Insights into the unique functionality of inorganic micro/nanoparticles for versatile ultrasound theranostics. Biomaterials 2017;142:13-30. [DOI: 10.1016/j.biomaterials.2017.07.016] [Cited by in Crossref: 93] [Cited by in F6Publishing: 99] [Article Influence: 18.6] [Reference Citation Analysis]
73 Browning RJ, Reardon PJT, Parhizkar M, Pedley RB, Edirisinghe M, Knowles JC, Stride E. Drug Delivery Strategies for Platinum-Based Chemotherapy. ACS Nano 2017;11:8560-78. [PMID: 28829568 DOI: 10.1021/acsnano.7b04092] [Cited by in Crossref: 117] [Cited by in F6Publishing: 125] [Article Influence: 23.4] [Reference Citation Analysis]
74 Yu L, Chen Y, Chen H. H2O2-responsive theranostic nanomedicine. Chinese Chemical Letters 2017;28:1841-50. [DOI: 10.1016/j.cclet.2017.05.023] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 6.6] [Reference Citation Analysis]
75 Zhou Y, Han X, Jing X, Chen Y. Construction of Silica-Based Micro/Nanoplatforms for Ultrasound Theranostic Biomedicine. Adv Healthc Mater 2017;6. [PMID: 28795530 DOI: 10.1002/adhm.201700646] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 7.0] [Reference Citation Analysis]
76 Wu M, Wang Y, Wang Y, Zhang M, Luo Y, Tang J, Wang Z, Wang D, Hao L, Wang Z. Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-co-glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer. Int J Nanomedicine 2017;12:5313-30. [PMID: 28794625 DOI: 10.2147/IJN.S136032] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 10.0] [Reference Citation Analysis]
77 Niu C, Xu Y, An S, Zhang M, Hu Y, Wang L, Peng Q. Near-infrared induced phase-shifted ICG/Fe3O4 loaded PLGA nanoparticles for photothermal tumor ablation. Sci Rep 2017;7:5490. [PMID: 28710483 DOI: 10.1038/s41598-017-06122-1] [Cited by in Crossref: 39] [Cited by in F6Publishing: 44] [Article Influence: 7.8] [Reference Citation Analysis]
78 Song W, Luo Y, Zhao Y, Liu X, Zhao J, Luo J, Zhang Q, Ran H, Wang Z, Guo D. Magnetic nanobubbles with potential for targeted drug delivery and trimodal imaging in breast cancer: an in vitro study. Nanomedicine 2017;12:991-1009. [DOI: 10.2217/nnm-2017-0027] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
79 Devarakonda SB, Myers MR, Giridhar D, Dibaji SA, Banerjee RK. Enhanced thermal effect using magnetic nano-particles during high-intensity focused ultrasound. PLoS One 2017;12:e0175093. [PMID: 28384646 DOI: 10.1371/journal.pone.0175093] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
80 Devarakonda SB, Myers MR, Lanier M, Dumoulin C, Banerjee RK. Assessment of Gold Nanoparticle-Mediated-Enhanced Hyperthermia Using MR-Guided High-Intensity Focused Ultrasound Ablation Procedure. Nano Lett 2017;17:2532-8. [PMID: 28287747 DOI: 10.1021/acs.nanolett.7b00272] [Cited by in Crossref: 51] [Cited by in F6Publishing: 57] [Article Influence: 10.2] [Reference Citation Analysis]
81 Sangtani A, Nag OK, Field LD, Breger JC, Delehanty JB. Multifunctional nanoparticle composites: progress in the use of soft and hard nanoparticles for drug delivery and imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017;9. [PMID: 28299903 DOI: 10.1002/wnan.1466] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 7.6] [Reference Citation Analysis]
82 Tang H, Zheng Y, Chen Y. Materials Chemistry of Nanoultrasonic Biomedicine. Adv Mater 2017;29. [PMID: 27991697 DOI: 10.1002/adma.201604105] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 11.4] [Reference Citation Analysis]
83 Yang P, Luo X, Wang S, Wang F, Tang C, Wang C. Biodegradable yolk-shell microspheres for ultrasound/MR dual-modality imaging and controlled drug delivery. Colloids and Surfaces B: Biointerfaces 2017;151:333-43. [DOI: 10.1016/j.colsurfb.2016.12.037] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
84 Wang Z, Qiao R, Tang N, Lu Z, Wang H, Zhang Z, Xue X, Huang Z, Zhang S, Zhang G, Li Y. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer. Biomaterials 2017;127:25-35. [PMID: 28279919 DOI: 10.1016/j.biomaterials.2017.02.037] [Cited by in Crossref: 130] [Cited by in F6Publishing: 138] [Article Influence: 26.0] [Reference Citation Analysis]
85 Fleming MM, Holbrook AI, Newell MS. Update on Image-Guided Percutaneous Ablation of Breast Cancer. American Journal of Roentgenology 2017;208:267-74. [DOI: 10.2214/ajr.16.17129] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
86 Mosafer J, Abnous K, Tafaghodi M, Jafarzadeh H, Ramezani M. Preparation and characterization of uniform-sized PLGA nanospheres encapsulated with oleic acid-coated magnetic-Fe 3 O 4 nanoparticles for simultaneous diagnostic and therapeutic applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017;514:146-54. [DOI: 10.1016/j.colsurfa.2016.11.056] [Cited by in Crossref: 36] [Cited by in F6Publishing: 24] [Article Influence: 7.2] [Reference Citation Analysis]
87 Niu D, Li Y, Shi J. Silica/organosilica cross-linked block copolymer micelles: a versatile theranostic platform. Chem Soc Rev 2017;46:569-85. [DOI: 10.1039/c6cs00495d] [Cited by in Crossref: 78] [Cited by in F6Publishing: 79] [Article Influence: 15.6] [Reference Citation Analysis]
88 Xu Y, Niu C, An S, Tang S, Xiao P, Peng Q, Wang L. Thermal-sensitive magnetic nanoparticles for dual-modal tumor imaging and therapy. RSC Adv 2017;7:40791-802. [DOI: 10.1039/c7ra07024a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
89 You Y, Wang Z, Ran H, Zheng Y, Wang D, Xu J, Wang Z, Chen Y, Li P. Nanoparticle-enhanced synergistic HIFU ablation and transarterial chemoembolization for efficient cancer therapy. Nanoscale 2016;8:4324-39. [PMID: 26837265 DOI: 10.1039/c5nr08292g] [Cited by in Crossref: 66] [Cited by in F6Publishing: 76] [Article Influence: 11.0] [Reference Citation Analysis]
90 Mcnamara K, Tofail SAM. Nanoparticles in biomedical applications. Advances in Physics: X 2016;2:54-88. [DOI: 10.1080/23746149.2016.1254570] [Cited by in Crossref: 127] [Cited by in F6Publishing: 58] [Article Influence: 21.2] [Reference Citation Analysis]
91 Atila Dinçer C, Yildiz N, Karakeçili A, Aydoğan N, Çalimli A. Synthesis and characterization of Fe 3 O 4 -MPTMS-PLGA nanocomposites for anticancer drug loading and release studies. Artificial Cells, Nanomedicine, and Biotechnology 2017;45:1408-14. [DOI: 10.1080/21691401.2016.1243546] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
92 Guo H, Jiang Z, Song S, Dai T, Wang X, Sun K, Zhou G, Dou H. Structural regulation of self-assembled iron oxide/polymer microbubbles towards performance-tunable magnetic resonance/ultrasonic dual imaging agents. Journal of Colloid and Interface Science 2016;482:95-104. [DOI: 10.1016/j.jcis.2016.07.042] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
93 Xu J, Chen Y, Deng L, Liu J, Cao Y, Li P, Ran H, Zheng Y, Wang Z. Microwave-activated nanodroplet vaporization for highly efficient tumor ablation with real-time monitoring performance. Biomaterials 2016;106:264-75. [DOI: 10.1016/j.biomaterials.2016.08.034] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
94 Xu J, Cao Y, Xu C, Cheng X, You Y, Yao Y, Liu J, Wang Z, Li P, Lu M. Combination of microbubbles and diagnostic ultrasound at a high mechanical index for the synergistic microwave ablation of tumours. Int J Hyperthermia 2017;33:318-26. [PMID: 27764970 DOI: 10.1080/02656736.2016.1239843] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
95 Qian X, Zheng Y, Chen Y. Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. Adv Mater 2016;28:8097-129. [PMID: 27384408 DOI: 10.1002/adma.201602012] [Cited by in Crossref: 365] [Cited by in F6Publishing: 387] [Article Influence: 60.8] [Reference Citation Analysis]
96 Zhou Y, Wang R, Teng Z, Wang Z, Hu B, Kolios M, Chen H, Zhang N, Wang Y, Li P, Wu X, Lu G, Chen Y, Zheng Y. Magnetic nanoparticle-promoted droplet vaporization for in vivo stimuli-responsive cancer theranostics. NPG Asia Mater 2016;8:e313-e313. [DOI: 10.1038/am.2016.146] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 4.2] [Reference Citation Analysis]
97 Wang H, Qin X, Li Z, Guo L, Zheng Z, Liu L, Fan T. Preparation and evaluation of MRI detectable poly (acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization. International Journal of Pharmaceutics 2016;511:831-9. [DOI: 10.1016/j.ijpharm.2016.07.028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
98 Kazek-kęsik A, Jaworska J, Krok-borkowicz M, Gołda-cępa M, Pastusiak M, Brzychczy-włoch M, Pamuła E, Kotarba A, Simka W. Hybrid oxide-polymer layer formed on Ti-15Mo alloy surface enhancing antibacterial and osseointegration functions. Surface and Coatings Technology 2016;302:158-65. [DOI: 10.1016/j.surfcoat.2016.05.073] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
99 Wang X, Jing X, Zhang X, Liu Q, Liu J, Song D, Wang J, Liu L. A versatile platform of magnetic microspheres loaded with dual-anticancer drugs for drug release. Materials Chemistry and Physics 2016;177:213-9. [DOI: 10.1016/j.matchemphys.2016.04.021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
100 Li N, Zhao L, Qi L, Li Z, Luan Y. Polymer assembly: Promising carriers as co-delivery systems for cancer therapy. Progress in Polymer Science 2016;58:1-26. [DOI: 10.1016/j.progpolymsci.2015.10.009] [Cited by in Crossref: 77] [Cited by in F6Publishing: 79] [Article Influence: 12.8] [Reference Citation Analysis]
101 Chen H, Wang Y, Wang T, Shi D, Sun Z, Xia C, Wang B. Application prospective of nanoprobes with MRI and FI dual-modality imaging on breast cancer stem cells in tumor. J Nanobiotechnology 2016;14:52. [PMID: 27339420 DOI: 10.1186/s12951-016-0195-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
102 Huynh E, Rajora MA, Zheng G. Multimodal micro, nano, and size conversion ultrasound agents for imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8:796-813. [PMID: 27006001 DOI: 10.1002/wnan.1398] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
103 Li W, Jan Zaloga, Ding Y, Liu Y, Janko C, Pischetsrieder M, Alexiou C, Boccaccini AR. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications. Sci Rep 2016;6:23140. [PMID: 27005428 DOI: 10.1038/srep23140] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 5.8] [Reference Citation Analysis]
104 Shan J, Wang L, Yu H, Ji J, Amer WA, Chen Y, Jing G, Khalid H, Akram M, Abbasi NM. Recent progress in Fe 3 O 4 based magnetic nanoparticles: from synthesis to application. Materials Science and Technology 2015. [DOI: 10.1179/1743284715y.0000000122] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
105 Yao Y, Yang K, Cao Y, Zhou X, Xu J, Liu J, Wang Q, Wang Z, Wang D. Comparison of the synergistic effect of lipid nanobubbles and SonoVue microbubbles for high intensity focused ultrasound thermal ablation of tumors. PeerJ 2016;4:e1716. [PMID: 26925336 DOI: 10.7717/peerj.1716] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
106 Chen Y, Ma M, Chen H, Shi J. Multifunctional Hollow Mesoporous Silica Nanoparticles for MR/US Imaging-Guided Tumor Therapy. In: Dai Z, editor. Advances in Nanotheranostics II. Singapore: Springer; 2016. pp. 189-222. [DOI: 10.1007/978-981-10-0063-8_6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
107 Li Z, Yuan D, Jin G, Tan BH, He C. Facile Layer-by-Layer Self-Assembly toward Enantiomeric Poly(lactide) Stereocomplex Coated Magnetite Nanocarrier for Highly Tunable Drug Deliveries. ACS Appl Mater Interfaces 2016;8:1842-53. [PMID: 26717323 DOI: 10.1021/acsami.5b09822] [Cited by in Crossref: 85] [Cited by in F6Publishing: 85] [Article Influence: 14.2] [Reference Citation Analysis]
108 Wiraja C, Yeo DC, Chong MSK, Xu C. Nanosensors for Continuous and Noninvasive Monitoring of Mesenchymal Stem Cell Osteogenic Differentiation. Small 2016;12:1342-50. [DOI: 10.1002/smll.201502047] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 5.2] [Reference Citation Analysis]
109 Dolci S, Domenici V, Vidili G, Orecchioni M, Bandiera P, Madeddu R, Farace C, Peana M, Tiné MR, Manetti R, Sgarrella F, Delogu LG. Immune compatible cystine-functionalized superparamagnetic iron oxide nanoparticles as vascular contrast agents in ultrasonography. RSC Adv 2016;6:2712-23. [DOI: 10.1039/c5ra19652c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
110 Wen C, Xie H, Zhang Z, Wu L, Hu J, Tang M, Wu M, Pang D. Fluorescent/magnetic micro/nano-spheres based on quantum dots and/or magnetic nanoparticles: preparation, properties, and their applications in cancer studies. Nanoscale 2016;8:12406-29. [DOI: 10.1039/c5nr08534a] [Cited by in Crossref: 79] [Cited by in F6Publishing: 81] [Article Influence: 13.2] [Reference Citation Analysis]
111 Gao Y, Zhao D, Chang M, Ahmad Z, Li J. Optimising the shell thickness-to-radius ratio for the fabrication of oil-encapsulated polymeric microspheres. Chemical Engineering Journal 2016;284:963-71. [DOI: 10.1016/j.cej.2015.09.054] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 7.8] [Reference Citation Analysis]
112 Gao C, Dai Z. Multifunctional Ultrasound Contrast Agents Integrating Targeted Imaging and Therapy. Advances in Nanotheranostics II 2016. [DOI: 10.1007/978-981-10-0063-8_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
113 Zheng H, Zheng Y, Yan F, Chen M, Li P. Next-Generation Ultrasonic Theranostic Agents for Molecular Imaging and Therapy: Design, Preparation, and Biomedical Application. Advances in Nanotheranostics II 2016. [DOI: 10.1007/978-981-10-0063-8_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
114 Zhou D, Li C, He M, Ma M, Li P, Gong Y, Ran H, Wang Z, Wang Z, Zheng Y, Sun Y. Folate-targeted perfluorohexane nanoparticles carrying bismuth sulfide for use in US/CT dual-mode imaging and synergistic high-intensity focused ultrasound ablation of cervical cancer. J Mater Chem B 2016;4:4164-81. [DOI: 10.1039/c6tb00261g] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
115 Fu L, Ke HT. Nanomaterials incorporated ultrasound contrast agents for cancer theranostics. Cancer Biol Med 2016;13:313-24. [PMID: 27807499 DOI: 10.20892/j.issn.2095-3941.2016.0065] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
116 Pan P, Chen J, Fan T, Hu Y, Wu T, Zhang Q. Facile preparation of biphasic-induced magnetic icariin-loaded composite microcapsules by automated in situ click technology. Colloids Surf B Biointerfaces 2016;140:50-9. [PMID: 26735894 DOI: 10.1016/j.colsurfb.2015.12.027] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
117 Silva MF, Hechenleitner AAW, Irache JM, Oliveira AJAD, Pineda EAG. Study of Thermal Degradation of PLGA, PLGA Nanospheres and PLGA/Maghemite Superparamagnetic Nanospheres. Mat Res 2015;18:1400-6. [DOI: 10.1590/1516-1439.045415] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
118 Nottelet B, Darcos V, Coudane J. Aliphatic polyesters for medical imaging and theranostic applications. European Journal of Pharmaceutics and Biopharmaceutics 2015;97:350-70. [DOI: 10.1016/j.ejpb.2015.06.023] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 6.6] [Reference Citation Analysis]
119 Li N, Zhao L, Qi L, Li Z, Luan Y. WITHDRAWN: Polymer assembly: Promising carriers as co-delivery systems for cancer therapy. Progress in Polymer Science 2015. [DOI: 10.1016/j.progpolymsci.2015.11.002] [Reference Citation Analysis]
120 Chong D, Liu X, Ma H, Huang G, Han YL, Cui X, Yan J, Xu F. Advances in fabricating double-emulsion droplets and their biomedical applications. Microfluid Nanofluid 2015;19:1071-90. [DOI: 10.1007/s10404-015-1635-8] [Cited by in Crossref: 75] [Cited by in F6Publishing: 50] [Article Influence: 10.7] [Reference Citation Analysis]
121 Song S, Guo H, Jiang Z, Jin Y, Wu Y, An X, Zhang Z, Sun K, Dou H. Self-assembled microbubbles as contrast agents for ultrasound/magnetic resonance dual-modality imaging. Acta Biomater 2015;24:266-78. [PMID: 26112374 DOI: 10.1016/j.actbio.2015.06.025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
122 Xu S, Yang F, Zhou X, Zhuang Y, Liu B, Mu Y, Wang X, Shen H, Zhi G, Wu D. Uniform PEGylated PLGA Microcapsules with Embedded Fe 3 O 4 Nanoparticles for US/MR Dual-Modality Imaging. ACS Appl Mater Interfaces 2015;7:20460-8. [DOI: 10.1021/acsami.5b06594] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 5.6] [Reference Citation Analysis]
123 Lima-tenório MK, Gómez Pineda EA, Ahmad NM, Fessi H, Elaissari A. Magnetic nanoparticles: In vivo cancer diagnosis and therapy. International Journal of Pharmaceutics 2015;493:313-27. [DOI: 10.1016/j.ijpharm.2015.07.059] [Cited by in Crossref: 123] [Cited by in F6Publishing: 96] [Article Influence: 17.6] [Reference Citation Analysis]
124 Zhang B, Zhang H, Tian L, Li X, Li W, Fan X, Ali N, Zhang Q. Magnetic microcapsules with inner asymmetric structure: Controlled preparation, mechanism, and application to drug release. Chemical Engineering Journal 2015;275:235-44. [DOI: 10.1016/j.cej.2015.04.025] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
125 Elsabahy M, Heo GS, Lim SM, Sun G, Wooley KL. Polymeric Nanostructures for Imaging and Therapy. Chem Rev 2015;115:10967-1011. [PMID: 26463640 DOI: 10.1021/acs.chemrev.5b00135] [Cited by in Crossref: 349] [Cited by in F6Publishing: 359] [Article Influence: 49.9] [Reference Citation Analysis]
126 Zhao Y, Song W, Wang D, Ran H, Wang R, Yao Y, Wang Z, Zheng Y, Li P. Phase-Shifted PFH@PLGA/Fe3O4 Nanocapsules for MRI/US Imaging and Photothermal Therapy with near-Infrared Irradiation. ACS Appl Mater Interfaces 2015;7:14231-42. [PMID: 26067333 DOI: 10.1021/acsami.5b01873] [Cited by in Crossref: 79] [Cited by in F6Publishing: 87] [Article Influence: 11.3] [Reference Citation Analysis]
127 Wang X, Niu D, Li P, Wu Q, Bo X, Liu B, Bao S, Su T, Xu H, Wang Q. Dual-Enzyme-Loaded Multifunctional Hybrid Nanogel System for Pathological Responsive Ultrasound Imaging and T2-Weighted Magnetic Resonance Imaging. ACS Nano 2015;9:5646-56. [PMID: 26035730 DOI: 10.1021/nn5068094] [Cited by in Crossref: 96] [Cited by in F6Publishing: 103] [Article Influence: 13.7] [Reference Citation Analysis]
128 Li J, Krupka T, Yao J, Wang R, Jiang L, Zhou Y, Zuo G, Wang Z, Dai L, Ren J, Zheng Y, Wang D. Liquid-solid phase-inversion PLGA implant for the treatment of residual tumor tissue after HIFU ablation. PLoS One 2015;10:e0117358. [PMID: 25710485 DOI: 10.1371/journal.pone.0117358] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
129 Zhou Y, Gu H, Xu Y, Li F, Kuang S, Wang Z, Zhou X, Ma H, Li P, Zheng Y, Ran H, Jian J, Zhao Y, Song W, Wang Q, Wang D. Targeted antiangiogenesis gene therapy using targeted cationic microbubbles conjugated with CD105 antibody compared with untargeted cationic and neutral microbubbles. Theranostics 2015;5:399-417. [PMID: 25699099 DOI: 10.7150/thno.10351] [Cited by in Crossref: 46] [Cited by in F6Publishing: 52] [Article Influence: 6.6] [Reference Citation Analysis]
130 Chen Y, Chen H, Shi J. Nanobiotechnology promotes noninvasive high-intensity focused ultrasound cancer surgery. Adv Healthc Mater 2015;4:158-65. [PMID: 24898413 DOI: 10.1002/adhm.201400127] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 6.4] [Reference Citation Analysis]
131 Zhou D, Sun Y, Zheng Y, Ran H, Li P, Wang Z, Wang Z. Superparamagnetic PLGA–iron oxide microspheres as contrast agents for dual-imaging and the enhancement of the effects of high-intensity focused ultrasound ablation on liver tissue. RSC Adv 2015;5:35693-703. [DOI: 10.1039/c5ra00880h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
132 Verma J, Lal S, Van Noorden CJ. Inorganic nanoparticles for the theranostics of cancer. European Journal of Nanomedicine 2015;7. [DOI: 10.1515/ejnm-2015-0024] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
133 Xi J, Qian X, Qian K, Zhang W, He W, Chen Y, Han J, Zhang Y, Yang X, Fan L. Au nanoparticle-coated, PLGA-based hybrid capsules for combined ultrasound imaging and HIFU therapy. J Mater Chem B 2015;3:4213-20. [DOI: 10.1039/c5tb00200a] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
134 Cavallo Marincola B, Pediconi F, Anzidei M, Miglio E, Di Mare L, Telesca M, Mancini M, D’amati G, Monti M, Catalano C, Napoli A. High-intensity focused ultrasound in breast pathology: non-invasive treatment of benign and malignant lesions. Expert Review of Medical Devices 2014;12:191-9. [DOI: 10.1586/17434440.2015.986096] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 4.0] [Reference Citation Analysis]
135 Habibi N. Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: Characterization of nanocomposite by FTIR, XRD, FESEM and TEM. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014;131:55-8. [DOI: 10.1016/j.saa.2014.04.039] [Cited by in Crossref: 86] [Cited by in F6Publishing: 89] [Article Influence: 10.8] [Reference Citation Analysis]
136 Qiang L, Yang T, Li Z, Wang H, Chen X, Cui X. Molecular dynamics simulations of the interaction between Fe3O4 and biocompatible polymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014;456:62-6. [DOI: 10.1016/j.colsurfa.2014.04.058] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
137 Jian J, Liu C, Gong Y, Su L, Zhang B, Wang Z, Wang D, Zhou Y, Xu F, Li P, Zheng Y, Song L, Zhou X. India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy. Theranostics 2014;4:1026-38. [PMID: 25161702 DOI: 10.7150/thno.9754] [Cited by in Crossref: 50] [Cited by in F6Publishing: 57] [Article Influence: 6.3] [Reference Citation Analysis]
138 Yang P, Wang F, Luo X, Zhang Y, Guo J, Shi W, Wang C. Rational Design of Magnetic Nanorattles as Contrast Agents for Ultrasound/Magnetic Resonance Dual-Modality Imaging. ACS Appl Mater Interfaces 2014;6:12581-7. [DOI: 10.1021/am502550b] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
139 Zhang K, Chen H, Li F, Wang Q, Zheng S, Xu H, Ma M, Jia X, Chen Y, Mou J, Wang X, Shi J. A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery. Biomaterials 2014;35:5875-85. [DOI: 10.1016/j.biomaterials.2014.03.043] [Cited by in Crossref: 69] [Cited by in F6Publishing: 73] [Article Influence: 8.6] [Reference Citation Analysis]
140 Yao MH, Ma M, Chen Y, Jia XQ, Xu G, Xu HX, Chen HR, Wu R. Multifunctional Bi2S3/PLGA nanocapsule for combined HIFU/radiation therapy. Biomaterials 2014;35:8197-205. [PMID: 24973300 DOI: 10.1016/j.biomaterials.2014.06.010] [Cited by in Crossref: 68] [Cited by in F6Publishing: 67] [Article Influence: 8.5] [Reference Citation Analysis]
141 Alphandéry E. Perspectives of breast cancer thermotherapies. J Cancer 2014;5:472-9. [PMID: 24959300 DOI: 10.7150/jca.8693] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 4.1] [Reference Citation Analysis]
142 Sabel MS. Nonsurgical ablation of breast cancer: future options for small breast tumors. Surg Oncol Clin N Am 2014;23:593-608. [PMID: 24882353 DOI: 10.1016/j.soc.2014.03.009] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
143 Ahmad Reza Dibaji S, Al-rjoub MF, Myers MR, Banerjee RK. Enhanced Heat Transfer and Thermal Dose Using Magnetic Nanoparticles During HIFU Thermal Ablation—An In-Vitro Study. Journal of Nanotechnology in Engineering and Medicine 2013;4:040902. [DOI: 10.1115/1.4027340] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
144 Gong A, Ma X, Xiang L, Ren W, Shen Z, Wu A. Improved double emulsion technology for fabricating autofluorescent microcapsules as novel ultrasonic/fluorescent dual-modality contrast agents. Colloids and Surfaces B: Biointerfaces 2014;116:561-7. [DOI: 10.1016/j.colsurfb.2014.01.038] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
145 Zhang X, Zheng Y, Wang Z, Huang S, Chen Y, Jiang W, Zhang H, Ding M, Li Q, Xiao X, Luo X, Wang Z, Qi H. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and Synergistic Targeted therapy of residual tumor during HIFU ablation. Biomaterials 2014;35:5148-61. [PMID: 24680663 DOI: 10.1016/j.biomaterials.2014.02.036] [Cited by in Crossref: 90] [Cited by in F6Publishing: 101] [Article Influence: 11.3] [Reference Citation Analysis]
146 Zhang L, Dong WF, Sun HB. Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale 2013;5:7664-84. [PMID: 23877222 DOI: 10.1039/c3nr01616a] [Cited by in Crossref: 166] [Cited by in F6Publishing: 169] [Article Influence: 20.8] [Reference Citation Analysis]
147 Silva MF, Ciciliatti MA, Hechenleitner AAW, Peñalva R, Agüeros M, Irache JM, Oliveira AJAD, Farooqi AA, Pineda EAG. Superparamagnetic maghemite loaded poly (ε- caprolactone) nanocapsules : characterization and synthesis optimization. Matéria (Rio J ) 2014;19:40-52. [DOI: 10.1590/s1517-70762014000100007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
148 Yang Q, Wu Y, Lan F, Ma S, Xie L, He B, Gu Z. Hollow superparamagnetic PLGA/Fe 3 O 4 composite microspheres for lysozyme adsorption. Nanotechnology 2014;25:085702. [DOI: 10.1088/0957-4484/25/8/085702] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
149 Yang Q, Ma S, Lan F, Xie L, Wu Y, He B, Gu Z. Reversible linear assemblies of superparamagnetic Fe3O4/PLGA composite microspheres induced by ultra-low magnetic field. Composites Science and Technology 2014;92:34-40. [DOI: 10.1016/j.compscitech.2013.12.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
150 Huang Y, Ma M, Chen S, Dai J, Chen F, Wang Z. Construction of multifunctional organic–inorganic hybrid Bi 2 S 3 –PLGA capsules for highly efficient ultrasound-guided radiosensitization of brachytherapy. RSC Adv 2014;4:26861-5. [DOI: 10.1039/c4ra02785j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
151 Qian X, Wang W, Kong W, Chen Y. Hollow periodic mesoporous organosilicas for highly efficient HIFU-based synergistic therapy. RSC Adv 2014;4:17950. [DOI: 10.1039/c3ra47654e] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 5.3] [Reference Citation Analysis]
152 Yan S, Zhang X, Sun Y, Wang T, Chen X, Yin J. In situ preparation of magnetic Fe3O4 nanoparticles inside nanoporous poly(l-glutamic acid)/chitosan microcapsules for drug delivery. Colloids and Surfaces B: Biointerfaces 2014;113:302-11. [DOI: 10.1016/j.colsurfb.2013.09.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.8] [Reference Citation Analysis]
153 Liu B, Zhou X, Yang F, Shen H, Wang S, Zhang B, Zhi G, Wu D. Fabrication of uniform sized polylactone microcapsules by premix membrane emulsification for ultrasound imaging. Polym Chem 2014;5:1693-701. [DOI: 10.1039/c3py01144e] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
154 Wang X, Chen H, Zhang K, Ma M, Li F, Zeng D, Zheng S, Chen Y, Jiang L, Xu H, Shi J. An Intelligent Nanotheranostic Agent for Targeting, Redox-Responsive Ultrasound Imaging, and Imaging-Guided High-Intensity Focused Ultrasound Synergistic Therapy. Small 2014;10:1403-11. [DOI: 10.1002/smll.201302846] [Cited by in Crossref: 70] [Cited by in F6Publishing: 72] [Article Influence: 7.8] [Reference Citation Analysis]
155 Huang H, Hu S, Hung S, Chiang C, Liu H, Chiu T, Lai H, Chen Y, Chen S. SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy. Journal of Controlled Release 2013;172:118-27. [DOI: 10.1016/j.jconrel.2013.07.029] [Cited by in Crossref: 70] [Cited by in F6Publishing: 75] [Article Influence: 7.8] [Reference Citation Analysis]
156 Zhou Y, Wang Z, Chen Y, Shen H, Luo Z, Li A, Wang Q, Ran H, Li P, Song W, Yang Z, Chen H, Wang Z, Lu G, Zheng Y. Microbubbles from gas-generating perfluorohexane nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv Mater 2013;25:4123-30. [PMID: 23788403 DOI: 10.1002/adma.201301655] [Cited by in Crossref: 126] [Cited by in F6Publishing: 139] [Article Influence: 14.0] [Reference Citation Analysis]
157 Yang Y, Wang H. Perspectives of nanotechnology in minimally invasive therapy of breast cancer. J Healthc Eng 2013;4:67-86. [PMID: 23502250 DOI: 10.1260/2040-2295.4.1.67] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
158 Niu D, Wang X, Li Y, Zheng Y, Li F, Chen H, Gu J, Zhao W, Shi J. Facile synthesis of magnetite/perfluorocarbon co-loaded organic/inorganic hybrid vesicles for dual-modality ultrasound/magnetic resonance imaging and imaging-guided high-intensity focused ultrasound ablation. Adv Mater 2013;25:2686-92. [PMID: 23447424 DOI: 10.1002/adma.201204316] [Cited by in Crossref: 79] [Cited by in F6Publishing: 85] [Article Influence: 8.8] [Reference Citation Analysis]
159 Yakar A, Tansık G, Keskin T, Gündüz U. Tailoring the magnetic behavior of polymeric particles for bioapplications. Journal of Polymer Engineering 2013;33:265-74. [DOI: 10.1515/polyeng-2012-0034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
160 Liu AB, Cai H, Ye B, Chen LL, Wang MY, Zhang J, Zhao YF. The damages of high intensity focused ultrasound to transplanted hydatid cysts in abdominal cavities of rabbits with aids of ultrasound contrast agent and superabsorbent polymer. Parasitol Res 2013;112:1865-75. [PMID: 23456020 DOI: 10.1007/s00436-013-3340-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
161 Malietzis G, Monzon L, Hand J, Wasan H, Leen E, Abel M, Muhammad A, Price P, Abel P. High-intensity focused ultrasound: advances in technology and experimental trials support enhanced utility of focused ultrasound surgery in oncology. Br J Radiol 2013;86:20130044. [PMID: 23403455 DOI: 10.1259/bjr.20130044] [Cited by in Crossref: 32] [Cited by in F6Publishing: 37] [Article Influence: 3.6] [Reference Citation Analysis]
162 Niu C, Wang Z, Lu G, Krupka TM, Sun Y, You Y, Song W, Ran H, Li P, Zheng Y. Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials 2013;34:2307-17. [PMID: 23276658 DOI: 10.1016/j.biomaterials.2012.12.003] [Cited by in Crossref: 145] [Cited by in F6Publishing: 164] [Article Influence: 14.5] [Reference Citation Analysis]
163 Li S, Wu PH. Magnetic resonance image-guided versus ultrasound-guided high-intensity focused ultrasound in the treatment of breast cancer. Chin J Cancer 2013;32:441-52. [PMID: 23237221 DOI: 10.5732/cjc.012.10104] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 4.8] [Reference Citation Analysis]
164 Wang X, Chen H, Zheng Y, Ma M, Chen Y, Zhang K, Zeng D, Shi J. Au-nanoparticle coated mesoporous silica nanocapsule-based multifunctional platform for ultrasound mediated imaging, cytoclasis and tumor ablation. Biomaterials. 2013;34:2057-2068. [PMID: 23246067 DOI: 10.1016/j.biomaterials.2012.11.044] [Cited by in Crossref: 113] [Cited by in F6Publishing: 109] [Article Influence: 11.3] [Reference Citation Analysis]
165 Hosseini F, Panahifar A, Adeli M, Amiri H, Lascialfari A, Orsini F, Doschak MR, Mahmoudi M. Synthesis of pseudopolyrotaxanes-coated Superparamagnetic Iron Oxide Nanoparticles as new MRI contrast agent. Colloids Surf B Biointerfaces 2013;103:652-7. [PMID: 23199519 DOI: 10.1016/j.colsurfb.2012.10.035] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]