BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vrignaud S, Benoit J, Saulnier P. Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials 2011;32:8593-604. [DOI: 10.1016/j.biomaterials.2011.07.057] [Cited by in Crossref: 177] [Cited by in F6Publishing: 147] [Article Influence: 16.1] [Reference Citation Analysis]
Number Citing Articles
1 Sun Q, Du Y, Zhao Z, Hall EAH, Gao H, Sukhorukov GB, Routh AF. Functional Silver-Coated Colloidosomes as Targeted Carriers for Small Molecules. Langmuir 2017;33:3755-64. [DOI: 10.1021/acs.langmuir.6b04594] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
2 Alford A, Rich M, Kozlovskaya V, Chen J, Sherwood J, Bolding M, Warram J, Bao Y, Kharlampieva E. Ultrasound‐Triggered Delivery of Anticancer Therapeutics from MRI‐Visible Multilayer Microcapsules. Adv Therap 2018;1:1800051. [DOI: 10.1002/adtp.201800051] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
3 Wang X, Liang Y, Fei S, He H, Zhang Y, Yin T, Tang X. Formulation and Pharmacokinetics of HSA-core and PLGA-shell Nanoparticles for Delivering Gemcitabine. AAPS PharmSciTech 2018;19:812-9. [DOI: 10.1208/s12249-017-0888-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
4 Bernocchi B, Carpentier R, Betbeder D. Nasal nanovaccines. Int J Pharm 2017;530:128-38. [PMID: 28698066 DOI: 10.1016/j.ijpharm.2017.07.012] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
5 Molavi F, Barzegar-jalali M, Hamishehkar H. Polyester based polymeric nano and microparticles for pharmaceutical purposes: A review on formulation approaches. Journal of Controlled Release 2020;320:265-82. [DOI: 10.1016/j.jconrel.2020.01.028] [Cited by in Crossref: 44] [Cited by in F6Publishing: 27] [Article Influence: 22.0] [Reference Citation Analysis]
6 dos Santos SB, Pereira SA, Rodrigues FA, da Silva AC, de Almeida RR, Sousa AC, Fechine LM, Denardin JC, Araneda F, Sá LG, da Silva CR, Nobre Júnior HV, Ricardo NM. Antibacterial activity of fluoxetine-loaded starch nanocapsules. International Journal of Biological Macromolecules 2020;164:2813-7. [DOI: 10.1016/j.ijbiomac.2020.08.184] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Cao K, Murshid N, Li L, Lopez A, Tam KC, Wang X. Hydration of Hydrophobic Iron–Carbonyl Homopolymers via Water–Carbonyl Interaction (WCI): Creation of Uniform Organometallic Aqueous Vesicles with Exceptionally High Encapsulation Capacity. Macromolecules 2015;48:7968-77. [DOI: 10.1021/acs.macromol.5b01531] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
8 Kushwah V, Agrawal AK, Dora CP, Mallinson D, Lamprou DA, Gupta RC, Jain S. Novel Gemcitabine Conjugated Albumin Nanoparticles: a Potential Strategy to Enhance Drug Efficacy in Pancreatic Cancer Treatment. Pharm Res 2017;34:2295-311. [DOI: 10.1007/s11095-017-2238-8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 5.6] [Reference Citation Analysis]
9 Ciro Y, Rojas J, Alhajj MJ, Carabali GA, Salamanca CH. Production and Characterization of Chitosan-Polyanion Nanoparticles by Polyelectrolyte Complexation Assisted by High-Intensity Sonication for the Modified Release of Methotrexate. Pharmaceuticals (Basel) 2020;13:E11. [PMID: 31936208 DOI: 10.3390/ph13010011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
10 Alcalá-alcalá S, Benítez-cardoza CG, Lima-muñoz EJ, Piñón-segundo E, Quintanar-guerrero D. Evaluation of a combined drug-delivery system for proteins assembled with polymeric nanoparticles and porous microspheres; characterization and protein integrity studies. International Journal of Pharmaceutics 2015;489:139-47. [DOI: 10.1016/j.ijpharm.2015.04.074] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
11 Latnikova A, Grigoriev DO, Möhwald H, Shchukin DG. Capsules Made of Cross-Linked Polymers and Liquid Core: Possible Morphologies and Their Estimation on the Basis of Hansen Solubility Parameters. J Phys Chem C 2012;116:8181-7. [DOI: 10.1021/jp2124372] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
12 Kah M, Hofmann T. Nanopesticide research: current trends and future priorities. Environ Int 2014;63:224-35. [PMID: 24333990 DOI: 10.1016/j.envint.2013.11.015] [Cited by in Crossref: 349] [Cited by in F6Publishing: 219] [Article Influence: 38.8] [Reference Citation Analysis]
13 Rabanel JM, Latreille PL, Lalloz A, Hildgen P, Banquy X. Nanostructured nanoparticles for improved drug delivery. Nanostructures for Drug Delivery. Elsevier; 2017. pp. 149-82. [DOI: 10.1016/b978-0-323-46143-6.00004-x] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
14 Zhang J, Zhang P, Zou Q, Li X, Fu J, Luo Y, Liang X, Jin Y. Co-Delivery of Gemcitabine and Paclitaxel in cRGD-Modified Long Circulating Nanoparticles with Asymmetric Lipid Layers for Breast Cancer Treatment. Molecules 2018;23:E2906. [PMID: 30405089 DOI: 10.3390/molecules23112906] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
15 Faucon A, Benhelli-Mokrani H, Fleury F, Dubreil L, Hulin P, Nedellec S, Doussineau T, Antoine R, Orlando T, Lascialfari A, Fresnais J, Lartigue L, Ishow E. Tuning the architectural integrity of high-performance magneto-fluorescent core-shell nanoassemblies in cancer cells. J Colloid Interface Sci 2016;479:139-49. [PMID: 27388127 DOI: 10.1016/j.jcis.2016.06.064] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
16 Shahin H, Vinjamuri BP, Mahmoud AA, Mansour SM, Chougule MB, Chablani L. Formulation and optimization of sildenafil citrate-loaded PLGA large porous microparticles using spray freeze-drying technique: A factorial design and in-vivo pharmacokinetic study. Int J Pharm 2021;597:120320. [PMID: 33539999 DOI: 10.1016/j.ijpharm.2021.120320] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
17 Bhatt LR, Khanal S, Koirala AR, Pant HR. Preparation and surface morphology of herbal based polylactide microspheres. Materials Letters 2019;235:157-60. [DOI: 10.1016/j.matlet.2018.10.003] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
18 Gong K, Shi A, Liu H, Liu L, Hu H, Yang Y, Adhikari B, Wang Q. Preparation of nanoliposome loaded with peanut peptide fraction: stability and bioavailability. Food Funct 2016;7:2034-42. [DOI: 10.1039/c5fo01612f] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
19 Nabi A, Tasneem S, Jesudason CG, Lee VS, Zain SBM. Study of interaction between cationic surfactant (CTAB) and paracetamol by electrical conductivity, tensiometric and spectroscopic methods. Journal of Molecular Liquids 2018;256:100-7. [DOI: 10.1016/j.molliq.2018.01.185] [Cited by in Crossref: 18] [Article Influence: 4.5] [Reference Citation Analysis]
20 Mohammadi-samani S, Taghipour B. PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches. Pharmaceutical Development and Technology 2014;20:385-93. [DOI: 10.3109/10837450.2014.882940] [Cited by in Crossref: 63] [Cited by in F6Publishing: 58] [Article Influence: 7.9] [Reference Citation Analysis]
21 Wang Q, Newby BZ. Layer-by-layer Polyelectrolytes Coating of Alginate Microgels for Sustained Release of Sodium Benzoate and Zosteric Acid. J Drug Deliv Sci Technol 2018;46:46-54. [PMID: 30555539 DOI: 10.1016/j.jddst.2018.04.019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
22 Shae D, Becker KW, Christov P, Yun DS, Lytton-Jean AKR, Sevimli S, Ascano M, Kelley M, Johnson DB, Balko JM, Wilson JT. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat Nanotechnol 2019;14:269-78. [PMID: 30664751 DOI: 10.1038/s41565-018-0342-5] [Cited by in Crossref: 151] [Cited by in F6Publishing: 147] [Article Influence: 50.3] [Reference Citation Analysis]
23 Visan RM, Leonties AR, Aricov L, Chihaia V, Angelescu DG. Polymorphism of chitosan-based networks stabilized by phytate investigated by molecular dynamics simulations. Phys Chem Chem Phys 2021;23:22601-12. [PMID: 34591050 DOI: 10.1039/d1cp02961d] [Reference Citation Analysis]
24 Miladi K, Sfar S, Fessi H, Elaissari A. Drug carriers in osteoporosis: preparation, drug encapsulation and applications. Int J Pharm 2013;445:181-95. [PMID: 23376227 DOI: 10.1016/j.ijpharm.2013.01.031] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 4.2] [Reference Citation Analysis]
25 Shin M, Kim HK, Lee H. Dopamine-loaded poly( d , l -lactic- co -glycolic acid) microspheres: New strategy for encapsulating small hydrophilic drugs with high efficiency. Biotechnol Progress 2014;30:215-23. [DOI: 10.1002/btpr.1835] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
26 Skwarecki AS, Milewski S, Schielmann M, Milewska MJ. Antimicrobial molecular nanocarrier–drug conjugates. Nanomedicine: Nanotechnology, Biology and Medicine 2016;12:2215-40. [DOI: 10.1016/j.nano.2016.06.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
27 Morral-ruíz G, Melgar-lesmes P, Solans C, García-celma M. Polyurethane nanoparticles, a new tool for biomedical applications? Advances in Polyurethane Biomaterials. Elsevier; 2016. pp. 195-216. [DOI: 10.1016/b978-0-08-100614-6.00007-x] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
28 Ciro Y, Rojas J, Di Virgilio AL, Alhajj MJ, Carabali GA, Salamanca CH. Production, physicochemical characterization, and anticancer activity of methotrexate-loaded phytic acid-chitosan nanoparticles on HT-29 human colon adenocarcinoma cells. Carbohydr Polym 2020;243:116436. [PMID: 32532389 DOI: 10.1016/j.carbpol.2020.116436] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
29 Noh I, Kim HO, Choi J, Choi Y, Lee DK, Huh YM, Haam S. Co-delivery of paclitaxel and gemcitabine via CD44-targeting nanocarriers as a prodrug with synergistic antitumor activity against human biliary cancer. Biomaterials 2015;53:763-74. [PMID: 25890771 DOI: 10.1016/j.biomaterials.2015.03.006] [Cited by in Crossref: 84] [Cited by in F6Publishing: 83] [Article Influence: 12.0] [Reference Citation Analysis]
30 Boucard J, Linot C, Blondy T, Nedellec S, Hulin P, Blanquart C, Lartigue L, Ishow E. Small Molecule-Based Fluorescent Organic Nanoassemblies with Strong Hydrogen Bonding Networks for Fine Tuning and Monitoring Drug Delivery in Cancer Cells. Small 2018;14:1802307. [DOI: 10.1002/smll.201802307] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 3.8] [Reference Citation Analysis]
31 Mandal A, Patel P, Pal D, Mitra AK. Multi-Layered Nanomicelles as Self-Assembled Nanocarrier Systems for Ocular Peptide Delivery. AAPS PharmSciTech 2019;20. [DOI: 10.1208/s12249-018-1267-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Song J, Wu C, Zhao Y, Yang M, Yao Q, Gao Y. Bioorthogonal Disassembly of Tetrazine Bearing Supramolecular Assemblies Inside Living Cells. Small 2021;:e2104772. [PMID: 34843166 DOI: 10.1002/smll.202104772] [Reference Citation Analysis]
33 Qamar S, Brown P, Ferguson S, Khan RA, Ismail B, Khan AR, Sayed M, Khan AM. The interaction of a model active pharmaceutical with cationic surfactant and the subsequent design of drug based ionic liquid surfactants. Journal of Colloid and Interface Science 2016;481:117-24. [DOI: 10.1016/j.jcis.2016.07.054] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
34 Liu H, Yang P, Wan D. The accessibility of a unimolecular micelle's core to environmental ions: Exploration with a xanthene dye. J Polym Sci Part B: Polym Phys 2015;53:566-73. [DOI: 10.1002/polb.23671] [Cited by in Crossref: 4] [Article Influence: 0.6] [Reference Citation Analysis]
35 Panwar R, Raghuwanshi N, Srivastava AK, Sharma AK, Pruthi V. In-vivo sustained release of nanoencapsulated ferulic acid and its impact in induced diabetes. Materials Science and Engineering: C 2018;92:381-92. [DOI: 10.1016/j.msec.2018.06.055] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
36 Kiparissides C, Kammona O. Nanoscale carriers for targeted delivery of drugs and therapeutic biomolecules. Can J Chem Eng 2013;91:638-51. [DOI: 10.1002/cjce.21685] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
37 Surwase SS, Munot NM, Idage BB, Idage SB. Tailoring the properties of mPEG-PLLA nanoparticles for better encapsulation and tuned release of the hydrophilic anticancer drug. Drug Deliv and Transl Res 2017;7:416-27. [DOI: 10.1007/s13346-017-0372-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
38 Karabey-Akyurek Y, Gurcay AG, Gurcan O, Turkoglu OF, Yabanoglu-Ciftci S, Eroglu H, Sargon MF, Bilensoy E, Oner L. Localized delivery of methylprednisolone sodium succinate with polymeric nanoparticles in experimental injured spinal cord model. Pharm Dev Technol 2017;22:972-81. [PMID: 26895158 DOI: 10.3109/10837450.2016.1143002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
39 Mattu C, Brachi G, Menichetti L, Flori A, Armanetti P, Ranzato E, Martinotti S, Nizzero S, Ferrari M, Ciardelli G. Alternating block copolymer-based nanoparticles as tools to modulate the loading of multiple chemotherapeutics and imaging probes. Acta Biomaterialia 2018;80:341-51. [DOI: 10.1016/j.actbio.2018.09.021] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
40 Yalcin TE, Ilbasmis-tamer S, Ibisoglu B, Özdemir A, Ark M, Takka S. Gemcitabine hydrochloride-loaded liposomes and nanoparticles: comparison of encapsulation efficiency, drug release, particle size, and cytotoxicity. Pharmaceutical Development and Technology 2018;23:76-86. [DOI: 10.1080/10837450.2017.1357733] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
41 Gonçalves M, Figueira P, Maciel D, Rodrigues J, Qu X, Liu C, Tomás H, Li Y. pH-sensitive Laponite®/doxorubicin/alginate nanohybrids with improved anticancer efficacy. Acta Biomaterialia 2014;10:300-7. [DOI: 10.1016/j.actbio.2013.09.013] [Cited by in Crossref: 64] [Cited by in F6Publishing: 49] [Article Influence: 8.0] [Reference Citation Analysis]
42 Kozlovskaya V, Chen J, Zavgorodnya O, Hasan MB, Kharlampieva E. Multilayer Hydrogel Capsules of Interpenetrated Network for Encapsulation of Small Molecules. Langmuir 2018;34:11832-42. [DOI: 10.1021/acs.langmuir.8b02465] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
43 Kilin VN, Anton H, Anton N, Steed E, Vermot J, Vandamme TF, Mely Y, Klymchenko AS. Counterion-enhanced cyanine dye loading into lipid nano-droplets for single-particle tracking in zebrafish. Biomaterials 2014;35:4950-7. [PMID: 24661553 DOI: 10.1016/j.biomaterials.2014.02.053] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 5.9] [Reference Citation Analysis]
44 Izadi Z, Divsalar A, Saboury AA, Sawyer L. β-lactoglobulin-pectin Nanoparticle-based Oral Drug Delivery System for Potential Treatment of Colon Cancer. Chem Biol Drug Des 2016;88:209-16. [DOI: 10.1111/cbdd.12748] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 8.0] [Reference Citation Analysis]
45 Kim J, Pramanick S, Lee D, Park H, Kim WJ. Polymeric biomaterials for the delivery of platinum-based anticancer drugs. Biomater Sci 2015;3:1002-17. [PMID: 26221935 DOI: 10.1039/c5bm00039d] [Cited by in Crossref: 52] [Cited by in F6Publishing: 9] [Article Influence: 7.4] [Reference Citation Analysis]
46 Deka B, Babu A, Baruah C, Barthakur M. Nanopesticides: A Systematic Review of Their Prospects With Special Reference to Tea Pest Management. Front Nutr 2021;8:686131. [PMID: 34447773 DOI: 10.3389/fnut.2021.686131] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Franco-Urquijo CA, Navarro-Becerra JÁ, Ríos A, Escalante B. Release of vascular agonists from liposome-microbubble conjugate by ultrasound-mediated microbubble destruction: effect on vascular function. Drug Deliv Transl Res 2021. [PMID: 33939122 DOI: 10.1007/s13346-021-00994-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Li Q, Cai T, Huang Y, Xia X, Cole SPC, Cai Y. A Review of the Structure, Preparation, and Application of NLCs, PNPs, and PLNs. Nanomaterials (Basel) 2017;7:E122. [PMID: 28554993 DOI: 10.3390/nano7060122] [Cited by in Crossref: 80] [Cited by in F6Publishing: 77] [Article Influence: 16.0] [Reference Citation Analysis]
49 Park JY, Cho YL, Chae JR, Moon SH, Cho WG, Choi YJ, Lee SJ, Kang WJ. Gemcitabine-Incorporated G-Quadruplex Aptamer for Targeted Drug Delivery into Pancreas Cancer. Mol Ther Nucleic Acids 2018;12:543-53. [PMID: 30195790 DOI: 10.1016/j.omtn.2018.06.003] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
50 Buhecha MD, Lansley AB, Somavarapu S, Pannala AS. Development and characterization of PLA nanoparticles for pulmonary drug delivery: Co-encapsulation of theophylline and budesonide, a hydrophilic and lipophilic drug. Journal of Drug Delivery Science and Technology 2019;53:101128. [DOI: 10.1016/j.jddst.2019.101128] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
51 Lim MPA, Lee WL, Widjaja E, Loo SCJ. One-step fabrication of core–shell structured alginate–PLGA/PLLA microparticles as a novel drug delivery system for water soluble drugs. Biomater Sci 2013;1:486. [DOI: 10.1039/c3bm00175j] [Cited by in Crossref: 36] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
52 Chen L, Liu J, Guan M, Zhou T, Duan X, Xiang Z. Growth Factor and Its Polymer Scaffold-Based Delivery System for Cartilage Tissue Engineering. Int J Nanomedicine 2020;15:6097-111. [PMID: 32884266 DOI: 10.2147/IJN.S249829] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
53 Azevedo MA, Bourbon AI, Vicente AA, Cerqueira MA. Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int J Biol Macromol 2014;71:141-6. [PMID: 24863916 DOI: 10.1016/j.ijbiomac.2014.05.036] [Cited by in Crossref: 124] [Cited by in F6Publishing: 87] [Article Influence: 15.5] [Reference Citation Analysis]
54 Cui N, Zhu S. Monoclonal antibody-tagged polyethylenimine (PEI)/poly(lactide) (PLA) nanoparticles for the enhanced delivery of doxorubicin in HER-positive breast cancers. RSC Adv 2016;6:79822-9. [DOI: 10.1039/c6ra12616b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
55 Monge-Fuentes V, Muehlmann LA, de Azevedo RB. Perspectives on the application of nanotechnology in photodynamic therapy for the treatment of melanoma. Nano Rev 2014;5. [PMID: 25317253 DOI: 10.3402/nano.v5.24381] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 4.9] [Reference Citation Analysis]
56 Zoratto N, Montanari E, Viola M, Wang J, Coviello T, Di Meo C, Matricardi P. Strategies to load therapeutics into polysaccharide-based nanogels with a focus on microfluidics: A review. Carbohydr Polym 2021;266:118119. [PMID: 34044935 DOI: 10.1016/j.carbpol.2021.118119] [Reference Citation Analysis]
57 Sun C, Shu K, Wang W, Ye Z, Liu T, Gao Y, Zheng H, He G, Yin Y. Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core. Int J Pharm 2014;463:108-14. [PMID: 24406673 DOI: 10.1016/j.ijpharm.2013.12.050] [Cited by in Crossref: 71] [Cited by in F6Publishing: 46] [Article Influence: 8.9] [Reference Citation Analysis]
58 Gdowski A, Johnson K, Shah S, Gryczynski I, Vishwanatha J, Ranjan A. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials. J Nanobiotechnology 2018;16:12. [PMID: 29433518 DOI: 10.1186/s12951-018-0339-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
59 Dave VS, Gupta D, Yu M, Nguyen P, Varghese Gupta S. Current and evolving approaches for improving the oral permeability of BCS Class III or analogous molecules. Drug Dev Ind Pharm 2017;43:177-89. [PMID: 27998192 DOI: 10.1080/03639045.2016.1269122] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
60 Man E, Hoskins C. Towards advanced wound regeneration. Eur J Pharm Sci 2020;149:105360. [PMID: 32361177 DOI: 10.1016/j.ejps.2020.105360] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
61 Naidu PSR, Norret M, Dunlop SA, Fitzgerald M, Clemons TD, Iyer KS. Novel Hydrophilic Copolymer-Based Nanoparticle Enhances the Therapeutic Efficiency of Doxorubicin in Cultured MCF-7 Cells. ACS Omega 2019;4:17083-9. [PMID: 31656880 DOI: 10.1021/acsomega.8b02894] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
62 Villamizar-Sarmiento MG, Guerrero J, Moreno-Villoslada I, Oyarzun-Ampuero FA. The key role of the drug self-aggregation ability to obtain optimal nanocarriers based on aromatic-aromatic drug-polymer interactions. Eur J Pharm Biopharm 2021;166:19-29. [PMID: 34052430 DOI: 10.1016/j.ejpb.2021.05.023] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Trigo Gutierrez JK, Zanatta GC, Ortega ALM, Balastegui MIC, Sanitá PV, Pavarina AC, Barbugli PA, Mima EGO. Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy. PLoS One 2017;12:e0187418. [PMID: 29107978 DOI: 10.1371/journal.pone.0187418] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
64 Samanta D, Meiser JL, Zare RN. Polypyrrole nanoparticles for tunable, pH-sensitive and sustained drug release. Nanoscale 2015;7:9497-504. [PMID: 25931037 DOI: 10.1039/c5nr02196k] [Cited by in Crossref: 53] [Cited by in F6Publishing: 12] [Article Influence: 8.8] [Reference Citation Analysis]
65 Parkins KM, Dubois VP, Kelly JJ, Chen Y, Knier NN, Foster PJ, Ronald JA. Engineering Circulating Tumor Cells as Novel Cancer Theranostics. Theranostics 2020;10:7925-37. [PMID: 32685030 DOI: 10.7150/thno.44259] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
66 Niu Y, Stadler FJ, Song J, Chen S, Chen S. Facile fabrication of polyurethane microcapsules carriers for tracing cellular internalization and intracellular pH-triggered drug release. Colloids and Surfaces B: Biointerfaces 2017;153:160-7. [DOI: 10.1016/j.colsurfb.2017.02.018] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
67 Ishizuka F, Chapman R, Kuchel RP, Coureault M, Zetterlund PB, Stenzel MH. Polymeric Nanocapsules for Enzyme Stabilization in Organic Solvents. Macromolecules 2018;51:438-46. [DOI: 10.1021/acs.macromol.7b02377] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
68 Wang Y, Chang TM. Nanobiotechnological Nanocapsules Containing Polyhemoglobin-Tyrosinase: Effects on Murine B16F10 Melanoma Cell Proliferation and Attachment. J Skin Cancer 2012;2012:673291. [PMID: 23209910 DOI: 10.1155/2012/673291] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
69 Eloy JO, Claro de Souza M, Petrilli R, Barcellos JPA, Lee RJ, Marchetti JM. Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids and Surfaces B: Biointerfaces 2014;123:345-63. [DOI: 10.1016/j.colsurfb.2014.09.029] [Cited by in Crossref: 227] [Cited by in F6Publishing: 195] [Article Influence: 28.4] [Reference Citation Analysis]
70 Gamboa A, Schüßler N, Soto-bustamante E, Romero-hasler P, Meinel L, Morales JO. Delivery of ionizable hydrophilic drugs based on pharmaceutical formulation of ion pairs and ionic liquids. European Journal of Pharmaceutics and Biopharmaceutics 2020;156:203-18. [DOI: 10.1016/j.ejpb.2020.09.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
71 Safwat S, Ishak RA, Hathout RM, Mortada ND. Statins anticancer targeted delivery systems: re-purposing an old molecule. J Pharm Pharmacol 2017;69:613-24. [PMID: 28271498 DOI: 10.1111/jphp.12707] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
72 Gahukar RT, Das RK. Plant-derived nanopesticides for agricultural pest control: challenges and prospects. Nanotechnol Environ Eng 2020;5. [DOI: 10.1007/s41204-020-0066-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
73 Niu Z, Conejos-sánchez I, Griffin BT, O’driscoll CM, Alonso MJ. Lipid-based nanocarriers for oral peptide delivery. Advanced Drug Delivery Reviews 2016;106:337-54. [DOI: 10.1016/j.addr.2016.04.001] [Cited by in Crossref: 152] [Cited by in F6Publishing: 132] [Article Influence: 25.3] [Reference Citation Analysis]
74 Jacobs J, Pavlović D, Prydderch H, Moradi MA, Ibarboure E, Heuts JPA, Lecommandoux S, Heise A. Polypeptide Nanoparticles Obtained from Emulsion Polymerization of Amino Acid N-Carboxyanhydrides. J Am Chem Soc 2019;141:12522-6. [PMID: 31348858 DOI: 10.1021/jacs.9b06750] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
75 Moysan E, González-fernández Y, Lautram N, Béjaud J, Bastiat G, Benoit J. An innovative hydrogel of gemcitabine-loaded lipid nanocapsules: when the drug is a key player of the nanomedicine structure. Soft Matter 2014;10:1767. [DOI: 10.1039/c3sm52781f] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 3.6] [Reference Citation Analysis]
76 Brayden DJ, Mrsny RJ. Oral peptide delivery: prioritizing the leading technologies. Therapeutic Delivery 2011;2:1567-73. [DOI: 10.4155/tde.11.114] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
77 Salim M, Abou-zied OK, Kulathunga HU, Baskaran A, Kuppusamy UR, Hashim R. Alkyl mono- and di-glucoside sugar vesicles as potential drug delivery vehicles: detecting drug release using fluorescence. RSC Adv 2015;5:55536-43. [DOI: 10.1039/c5ra09183g] [Cited by in Crossref: 10] [Article Influence: 1.4] [Reference Citation Analysis]
78 Basinska T, Gadzinowski M, Mickiewicz D, Slomkowski S. Functionalized Particles Designed for Targeted Delivery. Polymers (Basel) 2021;13:2022. [PMID: 34205672 DOI: 10.3390/polym13122022] [Reference Citation Analysis]
79 Wang P, Li Y, Jiang M. Effects of the multilayer structures on Exenatide release and bioactivity in microsphere/thermosensitive hydrogel system. Colloids Surf B Biointerfaces 2018;171:85-93. [PMID: 30015142 DOI: 10.1016/j.colsurfb.2018.04.063] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
80 Krishnaswamy K, Orsat V. Sustainable Delivery Systems Through Green Nanotechnology. Nano- and Microscale Drug Delivery Systems. Elsevier; 2017. pp. 17-32. [DOI: 10.1016/b978-0-323-52727-9.00002-9] [Cited by in Crossref: 12] [Article Influence: 2.4] [Reference Citation Analysis]
81 Zhou X, Hao Y, Yuan L, Pradhan S, Shrestha K, Pradhan O, Liu H, Li W. Nano-formulations for transdermal drug delivery: A review. Chinese Chemical Letters 2018;29:1713-24. [DOI: 10.1016/j.cclet.2018.10.037] [Cited by in Crossref: 62] [Cited by in F6Publishing: 20] [Article Influence: 15.5] [Reference Citation Analysis]
82 Ramazani F, Chen W, van Nostrum CF, Storm G, Kiessling F, Lammers T, Hennink WE, Kok RJ. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges. International Journal of Pharmaceutics 2016;499:358-67. [DOI: 10.1016/j.ijpharm.2016.01.020] [Cited by in Crossref: 133] [Cited by in F6Publishing: 116] [Article Influence: 22.2] [Reference Citation Analysis]
83 Griveau A, Bejaud J, Anthiya S, Avril S, Autret D, Garcion E. Silencing of miR-21 by locked nucleic acid-lipid nanocapsule complexes sensitize human glioblastoma cells to radiation-induced cell death. Int J Pharm 2013;454:765-74. [PMID: 23732394 DOI: 10.1016/j.ijpharm.2013.05.049] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 5.3] [Reference Citation Analysis]
84 Neamtu I, Chiriac AP, Nita LE, Diaconu A, Rusu AG. Nanogels Containing Polysaccharides for Bioapplications. Polymeric Nanomaterials in Nanotherapeutics. Elsevier; 2019. pp. 387-420. [DOI: 10.1016/b978-0-12-813932-5.00011-x] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
85 Fuenzalida JP, Flores ME, Móniz I, Feijoo M, Goycoolea F, Nishide H, Moreno-Villoslada I. Immobilization of hydrophilic low molecular-weight molecules in nanoparticles of chitosan/poly(sodium 4-styrenesulfonate) assisted by aromatic-aromatic interactions. J Phys Chem B 2014;118:9782-91. [PMID: 25054833 DOI: 10.1021/jp5037553] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
86 Poon CK, Tang O, Chen X, Kim B, Hartlieb M, Pollock CA, Hawkett BS, Perrier S. Fluorescent Labeling and Biodistribution of Latex Nanoparticles Formed by Surfactant-Free RAFT Emulsion Polymerization. Macromol Biosci 2017;17:1600366. [DOI: 10.1002/mabi.201600366] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
87 Mohamad Saimi NI, Salim N, Ahmad N, Abdulmalek E, Abdul Rahman MB. Aerosolized Niosome Formulation Containing Gemcitabine and Cisplatin for Lung Cancer Treatment: Optimization, Characterization and In Vitro Evaluation. Pharmaceutics 2021;13:59. [PMID: 33466428 DOI: 10.3390/pharmaceutics13010059] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
88 Egusquiaguirre SP, Beziere N, Pedraz JL, Hernández RM, Ntziachristos V, Igartua M. Optoacoustic imaging enabled biodistribution study of cationic polymeric biodegradable nanoparticles. Contrast Media Mol Imaging 2015;10:421-7. [PMID: 26018588 DOI: 10.1002/cmmi.1644] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
89 Lancheros R, Guerrero CA, Godoy-silva RD. Improvement of N-Acetylcysteine Loaded in PLGA Nanoparticles by Nanoprecipitation Method. Journal of Nanotechnology 2018;2018:1-11. [DOI: 10.1155/2018/3620373] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
90 Pascolo L, Bortot B, Benseny-Cases N, Gianoncelli A, Tosi G, Ruozi B, Rizzardi C, De Martino E, Vandelli MA, Severini GM. Detection of PLGA-based nanoparticles at a single-cell level by synchrotron radiation FTIR spectromicroscopy and correlation with X-ray fluorescence microscopy. Int J Nanomedicine 2014;9:2791-801. [PMID: 24944512 DOI: 10.2147/IJN.S58685] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
91 Chan KH, Lee WH, Zhuo S, Ni M. Harnessing supramolecular peptide nanotechnology in biomedical applications. Int J Nanomedicine 2017;12:1171-82. [PMID: 28223805 DOI: 10.2147/IJN.S126154] [Cited by in Crossref: 27] [Cited by in F6Publishing: 11] [Article Influence: 5.4] [Reference Citation Analysis]
92 Le VM, Lang MD, Shi WB, Liu JW. A collagen-based multicellular tumor spheroid model for evaluation of the efficiency of nanoparticle drug delivery. Artif Cells Nanomed Biotechnol 2016;44:540-4. [PMID: 25315504 DOI: 10.3109/21691401.2014.968820] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
93 Öztürk AA, Namlı İ, Güleç K, Kıyan HT. Diclofenac sodium loaded PLGA nanoparticles for inflammatory diseases with high anti-inflammatory properties at low dose: Formulation, characterization and in vivo HET-CAM analysis. Microvasc Res 2020;130:103991. [PMID: 32105668 DOI: 10.1016/j.mvr.2020.103991] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
94 Mosafer J, Teymouri M. Comparative study of superparamagnetic iron oxide/doxorubicin co-loaded poly (lactic-co-glycolic acid) nanospheres prepared by different emulsion solvent evaporation methods. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:1146-55. [DOI: 10.1080/21691401.2017.1362415] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
95 Li W, Liu S, Yao H, Liao G, Si Z, Gong X, Ren L, Wang L. Microparticle templating as a route to nanoscale polymer vesicles with controlled size distribution for anticancer drug delivery. J Colloid Interface Sci 2017;508:145-53. [PMID: 28829954 DOI: 10.1016/j.jcis.2017.08.049] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
96 Forero Ramirez LM, Babin J, Boudier A, Gaucher C, Schmutz M, Er-rafik M, Durand A, Six J, Nouvel C. First multi-reactive polysaccharide-based transurf to produce potentially biocompatible dextran-covered nanocapsules. Carbohydrate Polymers 2019;224:115153. [DOI: 10.1016/j.carbpol.2019.115153] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
97 De Matteis L, Alleva M, Serrano-Sevilla I, García-Embid S, Stepien G, Moros M, de la Fuente JM. Controlling Properties and Cytotoxicity of Chitosan Nanocapsules by Chemical Grafting. Mar Drugs 2016;14:E175. [PMID: 27706041 DOI: 10.3390/md14100175] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
98 Schill J, Schenning APHJ, Brunsveld L. Self-Assembled Fluorescent Nanoparticles from π-Conjugated Small Molecules: En Route to Biological Applications. Macromol Rapid Commun 2015;36:1306-21. [DOI: 10.1002/marc.201500117] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 5.6] [Reference Citation Analysis]
99 Kuypers S, Pramanik SK, D'olieslaeger L, Reekmans G, Peters M, D'haen J, Vanderzande D, Junkers T, Adriaensens P, Ethirajan A. Interfacial thiol–isocyanate reactions for functional nanocarriers: a facile route towards tunable morphologies and hydrophilic payload encapsulation. Chem Commun 2015;51:15858-61. [DOI: 10.1039/c5cc05258k] [Cited by in Crossref: 28] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
100 Bhattacharyya J, Weitzhandler I, Ho SB, McDaniel JR, Li X, Tang L, Liu J, Dewhirst M, Chilkoti A. Encapsulating a Hydrophilic Chemotherapeutic into Rod-like Nanoparticles of a Genetically Encoded Asymmetric Triblock Polypeptide Improves its Efficacy. Adv Funct Mater 2017;27:1605421. [PMID: 30319320 DOI: 10.1002/adfm.201605421] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
101 Lim DJ. Methylene Blue-Based Nano and Microparticles: Fabrication and Applications in Photodynamic Therapy. Polymers (Basel) 2021;13:3955. [PMID: 34833254 DOI: 10.3390/polym13223955] [Reference Citation Analysis]
102 Shrestha B, Tang L, Romero G. Nanoparticles‐Mediated Combination Therapies for Cancer Treatment. Adv Therap 2019;2:1900076. [DOI: 10.1002/adtp.201900076] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 4.3] [Reference Citation Analysis]
103 Matos BN, Pereira MN, Bravo MO, Cunha-Filho M, Saldanha-Araújo F, Gratieri T, Gelfuso GM. Chitosan nanoparticles loading oxaliplatin as a mucoadhesive topical treatment of oral tumors: Iontophoresis further enhances drug delivery ex vivo. Int J Biol Macromol 2020;154:1265-75. [PMID: 31726173 DOI: 10.1016/j.ijbiomac.2019.11.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
104 Donskyi I, Achazi K, Wycisk V, Böttcher C, Adeli M. Synthesis, self-assembly, and photocrosslinking of fullerene-polyglycerol amphiphiles as nanocarriers with controlled transport properties. Chem Commun 2016;52:4373-6. [DOI: 10.1039/c5cc08369a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
105 dos Santos PP, Flôres SH, de Oliveira Rios A, Chisté RC. Biodegradable polymers as wall materials to the synthesis of bioactive compound nanocapsules. Trends in Food Science & Technology 2016;53:23-33. [DOI: 10.1016/j.tifs.2016.05.005] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
106 Graham M, Shchukina E, De Castro PF, Shchukin D. Nanocapsules containing salt hydrate phase change materials for thermal energy storage. J Mater Chem A 2016;4:16906-12. [DOI: 10.1039/c6ta06189c] [Cited by in Crossref: 65] [Article Influence: 10.8] [Reference Citation Analysis]
107 Hwang JY, Li Z, Loh XJ. Small molecule therapeutic-loaded liposomes as therapeutic carriers: from development to clinical applications. RSC Adv 2016;6:70592-615. [DOI: 10.1039/c6ra09854a] [Cited by in Crossref: 41] [Article Influence: 6.8] [Reference Citation Analysis]
108 Costa Lima SA, Silvestre R, Barros D, Cunha J, Baltazar MT, Dinis-oliveira RJ, Cordeiro-da-silva A. Crucial CD8+ T-lymphocyte cytotoxic role in amphotericin B nanospheres efficacy against experimental visceral leishmaniasis. Nanomedicine: Nanotechnology, Biology and Medicine 2014;10:e1021-30. [DOI: 10.1016/j.nano.2013.12.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
109 Mi Y, Liu Z, Deng J, Lei H, Zhu C, Fan D, Lv X. Microencapsulation of Phosphorylated Human-Like Collagen-Calcium Chelates for Controlled Delivery and Improved Bioavailability. Polymers (Basel) 2018;10:E185. [PMID: 30966221 DOI: 10.3390/polym10020185] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
110 Tang J, Zhang R, Guo M, Shao L, Liu Y, Zhao Y, Zhang S, Wu Y, Chen C. Nucleosome-inspired nanocarrier obtains encapsulation efficiency enhancement and side effects reduction in chemotherapy by using fullerenol assembled with doxorubicin. Biomaterials 2018;167:205-15. [PMID: 29571055 DOI: 10.1016/j.biomaterials.2018.03.015] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 9.5] [Reference Citation Analysis]
111 Khezri K, Saeedi M, Morteza-semnani K, Akbari J, Rostamkalaei SS. An emerging technology in lipid research for targeting hydrophilic drugs to the skin in the treatment of hyperpigmentation disorders: kojic acid-solid lipid nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology 2020;48:841-53. [DOI: 10.1080/21691401.2020.1770271] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
112 Belletti D, Riva G, Luppi M, Tosi G, Forni F, Vandelli M, Ruozi B, Pederzoli F. Anticancer drug-loaded quantum dots engineered polymeric nanoparticles: Diagnosis/therapy combined approach. European Journal of Pharmaceutical Sciences 2017;107:230-9. [DOI: 10.1016/j.ejps.2017.07.020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
113 Yang Y, Wang S, Wang Y, Wang X, Wang Q, Chen M. Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol Adv. 2014;32:1301-1316. [PMID: 25109677 DOI: 10.1016/j.biotechadv.2014.07.007] [Cited by in Crossref: 200] [Cited by in F6Publishing: 174] [Article Influence: 25.0] [Reference Citation Analysis]
114 Santo VE, Gomes ME, Mano JF, Reis RL. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering. Nanomedicine 2012;7:1045-66. [DOI: 10.2217/nnm.12.78] [Cited by in Crossref: 44] [Cited by in F6Publishing: 33] [Article Influence: 4.4] [Reference Citation Analysis]
115 Balakrishnan K, Casimeer SC, Ghidan AY, Ghethan FY, Venkatachalam K, Singaravelu A. Bioformulated Hesperidin-Loaded PLGA Nanoparticles Counteract the Mitochondrial-Mediated Intrinsic Apoptotic Pathway in Cancer Cells. J Inorg Organomet Polym 2021;31:331-43. [DOI: 10.1007/s10904-020-01746-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
116 Fan Y, Li C, Cao H, Li F, Chen D. The intranuclear release of a potential anticancer drug from small nanoparticles that are derived from intracellular dissociation of large nanoparticles. Biomaterials 2012;33:4220-8. [DOI: 10.1016/j.biomaterials.2012.02.038] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 3.9] [Reference Citation Analysis]
117 Ma Y, Hou CJ, Wu HX, Fa HB, Li JJ, Shen CH, Li D, Huo DQ. Synthesis of maltodextrin-grafted-cinnamic acid and evaluation on its ability to stabilize anthocyanins via microencapsulation. J Microencapsul 2016;33:554-62. [PMID: 27686628 DOI: 10.1080/02652048.2016.1223201] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
118 Ji S, Lu J, Liu Z, Srivastava D, Song A, Liu Y, Lee I. Dynamic encapsulation of hydrophilic nisin in hydrophobic poly (lactic acid) particles with controlled morphology by a single emulsion process. Journal of Colloid and Interface Science 2014;423:85-93. [DOI: 10.1016/j.jcis.2014.02.025] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
119 Zenych A, Fournier L, Chauvierre C. Nanomedicine progress in thrombolytic therapy. Biomaterials 2020;258:120297. [DOI: 10.1016/j.biomaterials.2020.120297] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
120 Popiolski TM, Otsuka I, Halila S, Muniz EC, Soldi V, Borsali R. Preparation of Polymeric Micelles of Poly(Ethylene Oxide-b-Lactic Acid) and their Encapsulation With Lavender Oil. Mat Res 2016;19:1356-65. [DOI: 10.1590/1980-5373-mr-2016-0430] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
121 Six J, Ferji K. Polymerization induced self-assembly: an opportunity toward the self-assembly of polysaccharide-containing copolymers into high-order morphologies. Polym Chem 2019;10:45-53. [DOI: 10.1039/c8py01295d] [Cited by in Crossref: 35] [Cited by in F6Publishing: 1] [Article Influence: 11.7] [Reference Citation Analysis]
122 Thakur S, Singh H, Singh A, Kaur S, Sharma A, Singh SK, kaur S, Kaur G, Jain SK. Thermosensitive injectable hydrogel containing carboplatin loaded nanoparticles: A dual approach for sustained and localized delivery with improved safety and therapeutic efficacy. Journal of Drug Delivery Science and Technology 2020;58:101817. [DOI: 10.1016/j.jddst.2020.101817] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
123 Chen W, Wu C. Synthesis, functionalization, and applications of metal–organic frameworks in biomedicine. Dalton Trans 2018;47:2114-33. [DOI: 10.1039/c7dt04116k] [Cited by in Crossref: 131] [Cited by in F6Publishing: 17] [Article Influence: 32.8] [Reference Citation Analysis]
124 Arpicco S, Battaglia L, Brusa P, Cavalli R, Chirio D, Dosio F, Gallarate M, Milla P, Peira E, Rocco F, Sapino S, Stella B, Ugazio E, Ceruti M. Recent studies on the delivery of hydrophilic drugs in nanoparticulate systems. Journal of Drug Delivery Science and Technology 2016;32:298-312. [DOI: 10.1016/j.jddst.2015.09.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
125 Saravanakumar K, Sriram B, Sathiyaseelan A, Mariadoss AVA, Hu X, Han KS, Vishnupriya V, MubarakAli D, Wang MH. Synthesis, characterization, and cytotoxicity of starch-encapsulated biogenic silver nanoparticle and its improved anti-bacterial activity. Int J Biol Macromol 2021;182:1409-18. [PMID: 33965484 DOI: 10.1016/j.ijbiomac.2021.05.036] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
126 Rao W, Wang H, Han J, Zhao S, Dumbleton J, Agarwal P, Zhang W, Zhao G, Yu J, Zynger DL, Lu X, He X. Chitosan-Decorated Doxorubicin-Encapsulated Nanoparticle Targets and Eliminates Tumor Reinitiating Cancer Stem-like Cells. ACS Nano 2015;9:5725-40. [PMID: 26004286 DOI: 10.1021/nn506928p] [Cited by in Crossref: 182] [Cited by in F6Publishing: 160] [Article Influence: 26.0] [Reference Citation Analysis]
127 Alper Öztürk A, Namlı İ, Aygül A. Cefaclor Monohydrate-Loaded Colon-Targeted Nanoparticles for Use in COVID-19 Dependent Coinfections and Intestinal Symptoms: Formulation, Characterization, Release Kinetics, and Antimicrobial Activity. Assay Drug Dev Technol 2021;19:156-75. [PMID: 33728979 DOI: 10.1089/adt.2020.1014] [Reference Citation Analysis]
128 Seo HW, Kim GH, Kim DY, Yoon SM, Kwon JS, Kang WS, Lee B, Kim JH, Min BH, Kim MS. Microemulsion of erythromycine for transdermal drug delivery. J Appl Polym Sci 2013;128:4277-82. [DOI: 10.1002/app.38648] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
129 Vrignaud S, Anton N, Passirani C, Benoit J, Saulnier P. Aqueous core nanocapsules: a new solution for encapsulating doxorubicin hydrochloride. Drug Development and Industrial Pharmacy 2012;39:1706-11. [DOI: 10.3109/03639045.2012.730526] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
130 Sierant M, Kazmierski S, Rozanski A, Paluch P, Bienias U, Miksa BJ. Nanocapsules for 5-fluorouracil delivery decorated with a poly(2-ethylhexyl methacrylate-co-7-(4-trifluoromethyl)coumarin acrylamide) cross-linked wall. New J Chem 2015;39:1506-16. [DOI: 10.1039/c4nj02053g] [Cited by in Crossref: 7] [Article Influence: 1.0] [Reference Citation Analysis]
131 Wang J, Colson YL, Grinstaff MW. Tension-Activated Delivery of Small Molecules and Proteins from Superhydrophobic Composites. Adv Healthc Mater 2018;7:e1701096. [PMID: 29280324 DOI: 10.1002/adhm.201701096] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
132 Li Q, Li X, Zhao C. Strategies to Obtain Encapsulation and Controlled Release of Small Hydrophilic Molecules. Front Bioeng Biotechnol 2020;8:437. [PMID: 32478055 DOI: 10.3389/fbioe.2020.00437] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
133 Lima TLC, Feitosa RC, Dos Santos-Silva E, Dos Santos-Silva AM, Siqueira EMDS, Machado PRL, Cornélio AM, do Egito EST, Fernandes-Pedrosa MF, Farias KJS, da Silva-Júnior AA. Improving Encapsulation of Hydrophilic Chloroquine Diphosphate into Biodegradable Nanoparticles: A Promising Approach against Herpes Virus Simplex-1 Infection. Pharmaceutics 2018;10:E255. [PMID: 30513856 DOI: 10.3390/pharmaceutics10040255] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
134 Steinmacher F, Baier G, Musyanovych A, Landfester K, Araújo P, Sayer C. Design of Cross-Linked Starch Nanocapsules for Enzyme-Triggered Release of Hydrophilic Compounds. Processes 2017;5:25. [DOI: 10.3390/pr5020025] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
135 Kwon DY, Tai GZ, Park JH, Lee BK, Lee JH, Kim JH, Lee KW, Lee B, Jang JW, Kim MS. Preparation of methoxy poly (ethyleneglycol)-b-poly (ε-caprolactone-co-L-lactide) and characterization as biodegradable micelles. J Polym Res 2014;21. [DOI: 10.1007/s10965-014-0474-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
136 Suk KH, Gopinath SC, Anbu P, Lakshmipriya T. Cellulose nanoparticles encapsulated cow urine for effective inhibition of pathogens. Powder Technology 2018;328:140-7. [DOI: 10.1016/j.powtec.2018.01.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
137 Miller SL, Wiebenga-Sanford BP, Rithner CD, Levinger NE. Nanoconfinement Raises the Energy Barrier to Hydrogen Atom Exchange between Water and Glucose. J Phys Chem B 2021;125:3364-73. [PMID: 33784460 DOI: 10.1021/acs.jpcb.0c10681] [Reference Citation Analysis]
138 Wu J, Crist RM, McNeil SE, Clogston JD. Ion quantification in liposomal drug products using high performance liquid chromatography. J Pharm Biomed Anal 2019;165:41-6. [PMID: 30502551 DOI: 10.1016/j.jpba.2018.11.048] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
139 Zhang X, Hu B, Zhao Y, Yang Y, Gao Z, Nishinari K, Yang J, Zhang Y, Fang Y. Electrostatic Interaction-Based Fabrication of Calcium Alginate-Zein Core-Shell Microcapsules of Regulable Shapes and Sizes. Langmuir 2021;37:10424-32. [PMID: 34427433 DOI: 10.1021/acs.langmuir.1c01098] [Reference Citation Analysis]
140 Qiao Z, Zhang D, Hou C, Zhao S, Liu Y, Gao Y, Tan N, Wang H. A pH-responsive natural cyclopeptide RA-V drug formulation for improved breast cancer therapy. J Mater Chem B 2015;3:4514-23. [DOI: 10.1039/c5tb00445d] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 1.9] [Reference Citation Analysis]
141 Sabaeifard P, Abdi-Ali A, Soudi MR, Gamazo C, Irache JM. Amikacin loaded PLGA nanoparticles against Pseudomonas aeruginosa. Eur J Pharm Sci 2016;93:392-8. [PMID: 27575877 DOI: 10.1016/j.ejps.2016.08.049] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
142 Sathyamoorthy N, Magharla DD, Vankayalu SD. Effect of Surface Modification on the In vitro Protein Adsorption and Cell Cytotoxicity of Vinorelbine Nanoparticles. J Pharm Bioallied Sci 2017;9:135-43. [PMID: 28717337 DOI: 10.4103/jpbs.JPBS_258_16] [Reference Citation Analysis]
143 Raouane M, Desmaële D, Urbinati G, Massaad-Massade L, Couvreur P. Lipid conjugated oligonucleotides: a useful strategy for delivery. Bioconjug Chem 2012;23:1091-104. [PMID: 22372953 DOI: 10.1021/bc200422w] [Cited by in Crossref: 102] [Cited by in F6Publishing: 89] [Article Influence: 10.2] [Reference Citation Analysis]
144 Gatti THH, Eloy JO, Ferreira LMB, Silva ICD, Pavan FR, Gremião MPD, Chorilli M. Insulin-loaded polymeric mucoadhesive nanoparticles: development, characterization and cytotoxicity evaluation. Braz J Pharm Sci 2018;54. [DOI: 10.1590/s2175-97902018000117314] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
145 Vilchez A, Acevedo F, Cea M, Seeger M, Navia R. Applications of Electrospun Nanofibers with Antioxidant Properties: A Review. Nanomaterials (Basel) 2020;10:E175. [PMID: 31968539 DOI: 10.3390/nano10010175] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
146 Di Y, Gao Y, Gai X, Wang D, Wang Y, Yang X, Zhang D, Pan W, Yang X. Co-delivery of hydrophilic gemcitabine and hydrophobic paclitaxel into novel polymeric micelles for cancer treatment. RSC Adv 2017;7:24030-9. [DOI: 10.1039/c7ra02909h] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
147 Vanpouille-Box C, Hindré F. Nanovectorized radiotherapy: a new strategy to induce anti-tumor immunity. Front Oncol 2012;2:136. [PMID: 23087900 DOI: 10.3389/fonc.2012.00136] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
148 Movellan J, Urbán P, Moles E, de la Fuente JM, Sierra T, Serrano JL, Fernàndez-Busquets X. Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs. Biomaterials 2014;35:7940-50. [PMID: 24930847 DOI: 10.1016/j.biomaterials.2014.05.061] [Cited by in Crossref: 56] [Cited by in F6Publishing: 44] [Article Influence: 7.0] [Reference Citation Analysis]
149 Chitkara D, Kumar N. BSA-PLGA-based core-shell nanoparticles as carrier system for water-soluble drugs. Pharm Res 2013;30:2396-409. [PMID: 23756758 DOI: 10.1007/s11095-013-1084-6] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 4.7] [Reference Citation Analysis]
150 Nagarajan S, Kiran MS, Tsibouklis J, Reddy BSR. Multifunctional star-shaped polylactic acid implants for use in angioplasty. J Mater Chem B 2014;2:6549-59. [DOI: 10.1039/c4tb00272e] [Cited by in Crossref: 7] [Article Influence: 0.9] [Reference Citation Analysis]
151 Gharieh A, Khoee S, Mahdavian AR. Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics. Adv Colloid Interface Sci 2019;269:152-86. [PMID: 31082544 DOI: 10.1016/j.cis.2019.04.010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
152 Pramanik SK, Seneca S, Peters M, D'olieslaeger L, Reekmans G, Vanderzande D, Adriaensens P, Ethirajan A. Morphology-dependent pH-responsive release of hydrophilic payloads using biodegradable nanocarriers. RSC Adv 2018;8:36869-78. [DOI: 10.1039/c8ra07066k] [Cited by in Crossref: 9] [Article Influence: 2.3] [Reference Citation Analysis]
153 Lepeltier E, Loretz B, Desmaële D, Zapp J, Herrmann J, Couvreur P, Lehr C. Squalenoylation of Chitosan: A Platform for Drug Delivery? Biomacromolecules 2015;16:2930-9. [DOI: 10.1021/acs.biomac.5b00840] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
154 Gao J, Liu C, Shi J, Ni F, Shen Q, Xie H, Wang K, Lei Q, Fang W, Ren G. The regulation of sodium alginate on the stability of ovalbumin-pectin complexes for VD3 encapsulation and in vitro simulated gastrointestinal digestion study. Food Research International 2021;140:110011. [DOI: 10.1016/j.foodres.2020.110011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
155 Wrona M, Cran MJ, Nerín C, Bigger SW. Development and characterisation of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications. Carbohydr Polym 2017;156:108-17. [PMID: 27842804 DOI: 10.1016/j.carbpol.2016.08.094] [Cited by in Crossref: 69] [Cited by in F6Publishing: 46] [Article Influence: 11.5] [Reference Citation Analysis]
156 Zhu Q, Jia L, Gao Z, Wang C, Jiang H, Zhang J, Dong L. A Tumor Environment Responsive Doxorubicin-Loaded Nanoparticle for Targeted Cancer Therapy. Mol Pharmaceutics 2014;11:3269-78. [DOI: 10.1021/mp4007776] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
157 Silva de Melo NF, Campos EV, Gonçalves CM, de Paula E, Pasquoto T, de Lima R, Rosa AH, Fraceto LF. Development of hydrophilic nanocarriers for the charged form of the local anesthetic articaine. Colloids Surf B Biointerfaces 2014;121:66-73. [PMID: 24934456 DOI: 10.1016/j.colsurfb.2014.05.035] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]